84272 (675685), страница 6
Текст из файла (страница 6)
Таким образом, получили минимальные общие затраты на производство и хранение продукции и последнюю компоненту оптимального решения:
Для нахождения остальных компонент оптимального решения, необходимо воспользоваться обычными правилами динамического программирования.
Тогда т.к. , то
, откуда
, следовательно, из таблицы 11.:
Аналогично т.к. , то
или
, откуда
или
, следовательно, из таблицы 10.:
Следовательно, получен оптимальный план производства, который имеет два варианта:
при этом, каждый вариант оптимального плана производства обеспечивает минимальные общие затраты на производство и хранение продукции в размере 39 денежных единиц.
7. Анализ доходности и риска финансовых операций
Финансовой называется операция, начальное и конечное состояние которой имеют денежную оценку и цель проведения которой заключается в максимизации дохода в виде разности между конечной и начальной оценками. При этом практически все финансовые операции проходят в условиях неопределенности и, следовательно, их результат невозможно предсказать заранее. Поэтому при проведении финансовой операции возможно получение как прибыли, так и убытка.
Поэтому задача анализа доходности и риска финансовой операций заключается в оценке финансовой операции с точки зрения ее доходности и риска. Наиболее распространенным способом оценки финансовой операций является представление дохода операции как случайной величины и оценка риска операции как среднего квадратического отклонения этого случайного дохода.
Например, если доход от проведения некоторой финансовой операции есть случайная величина , то средний ожидаемый доход
– это математическое ожидание случайной величины
:
, где
есть вероятность получить доход
Т.к. среднеквадратическое отклонение:
это мера разбросанности возможных значений дохода вокруг среднего ожидаемого дохода, то его можно считать количественной мерой риска операции и обозначить как :
Допустим, что по четырем финансовым операциям ,
,
,
ряды распределения доходов и вероятностей получения этих доходов имеют вид:
Тогда т.к. , то средний ожидаемый доход каждой операции имеет вид:
Т.к. , то риски каждой финансовой операции имеют вид:
Нанесем средние ожидаемые доходы и риски
каждой операции на плоскость (см. график 2.).
Тогда, чем правее точка на графике, тем более доходная операция, чем точка выше – тем более она рисковая.
Для определения операции оптимальной по Парето, необходимо на графике найти точку, которую не доминирует никакая другая точка.
Так как точка доминирует точку
, если
и
, то из графика 2. видно, что 3-ая операция доминирует 2-ую операцию, а 1-ая операция доминирует 3-ую и 2-ую операции. Но 1-ая и 4-ая операции несравнимы, т.к. доходность 4-ой операции больше, но и риск ее тоже больше, чем доходность и риск 1-ой операции, следовательно, 1-я операция является оптимальной по Парето.
Для нахождения лучшей операции можно применить взвешивающую формулу, которая для пар дает одно число, по которому можно определить лучшую операцию. Допустим, что взвешивающей формулой будет
, тогда:
Отсюда видно, что 1-ая финансовая операция – лучшая, а 2-ая – худшая.
8. Оптимальный портфель ценных бумаг
Задача о формировании оптимального портфеля ценных бумаг – это задача о распределении капитала, который участник рынка хочет потратить на покупку набора ценных бумаг, по различным видам ценных бумаг, удовлетворяющих возможность получения некоторого дохода.
Из характеристик ценных бумаг наиболее значимы две: эффективность и рискованность. Т.к. эффективность – это некоторый обобщенный показатель дохода или прибыли, то ее считают случайной величиной, а ее математическое ожидание обозначают как
. Рискованность ценных бумаг отождествляют со средним квадратическим отклонением, при этом дисперсию обычно называют вариацией и обозначают как
, т.е.:
Примем следующие обозначения:
Номер вида ценных бумаг | |
Доля капитала, потраченная на закупку ценных бумаг i-го вида (сумма всех долей равна единице) | |
Эффективность ценных бумаг i-го вида, стоящих одну денежную единицу | |
Ковариация ценных бумаг i-го и j-го видов | |
Рискованность ценных бумаг i-го вида | |
Эффективность портфеля (набора) ценных бумаг |
Тогда, математическое ожидание эффективности портфеля ценных бумаг:
вариация портфеля ценных бумаг:
риск портфеля ценных бумаг:
Следовательно, математическая формализация задачи формирования оптимального портфеля ценных бумаг:
Найти такое распределение долей капитала, которое минимизирует вариацию эффективности портфеля, при заданной ожидаемой эффективности портфеля .
Тогда, если оптимальное решение обозначить как *, то:
означает рекомендацию вложить долю | |
Означает возможность проведения операции “short sale”, т.е. краткосрочного вложения доли капитала в более доходные ценные бумаги |
Если на рынке есть безрисковые ценные бумаги, то решение задачи о формировании портфеля ценных бумаг приобретает новое качество.
Пусть:
Эффективность безрисковых ценных бумаг | |
Доля капитала, вложенного в безрисковые ценные бумаги | |
Средняя ожидаемая эффективность рисковой части портфеля | |
Вариация рисковой части портфеля | |
Среднее квадратическое отклонение эффективности рисковой части портфеля |
Тогда в рисковую часть портфеля вложена часть всего капитала, а т.к. считается, что безрисковые ценные бумаги некоррелированы с остальными, то ожидаемая эффективность всего портфеля ценных бумаг:
вариация портфеля ценных бумаг:
риск портфеля ценных бумаг:
Допустим, что задача состоит в нахождении распределения капитала, при формировании оптимального портфеля ценных бумаг заданной эффективности, состоящего из трех видов ценных бумаг: безрисковых эффективности 3 и некоррелированных рисковых, с ожидаемой эффективностью 5 и 9, риски которых равны 4 и 6, т.е.: