85594 (640668)
Текст из файла
Работа Скворцова Александра Петровича,
учителя, ветерана педагогического труда
Доказательство утверждения, частным случаем которого является великая теорема Ферма
Содержание
Общее утверждение
Утверждение 1
Доказательство Части первой «Утверждения 1»
Доказательство Части второй «Утверждения 1»
Пример
Примечание
«Вывод» о Великой теореме Ферма (простое)
Утверждение 2
Доказательство Части первой «Утверждения 2»
Доказательство Части второй «Утверждения 2»
Примечание
Окончательный «Вывод» о Великой теореме Ферма
Утверждение 3
Доказательство Части первой «Утверждения 3»
Доказательство Части второй «Утверждения 3»
Примечание
Общий вывод
Литература
Доказательство нижеприведённого «Утверждения» осуществлено элементарными средствами. В данной работе рассматриваются уравнения , частными случаями которых являются уравнения Ферма
, где а – чётное число,
и
- целые числа,
,
,
- =натуральные числа.
Метод, используемый в этой работе, опирается на применение дополнительного квадратного уравнения и его общего решения, чётность которого совпадает с числами, исследуемыми в моей работе.
Этот метод позволяет:
-
Судить о возможности существования целых решений уравнения Ферма для
, т.е. о возможности существования «Пифагоровых троек», т.к. при рассуждениях никаких «противоречий» не возникает (доказательство этого в данной работе не приведено).
-
Судить об отсутствии решений в попарно взаимно простых целых числах уравнения
, где
- натуральное число, а – чётное число, т.к. при рассуждениях возникают «противоречия» (доказательство этого в данной работе не приведено, но дан пример на стр. 33).
-
Судить о возможности существования частного решения уравнения
при
(или b = ±1, или c = ±1), которое входит в п. «Исключения» моего общего «Утверждения». И такие решения следующие:
а) b = ±1; c = ±3; a = 2.
б) b = 3; c = ±1; a = -2 («Пример» на стр. 33).
4. Судить о неразрешимости в целых числах уравнения , где а – чётное число. Это хорошо известный факт в теории чисел (доказательство этого в данной работе приведено).
5. Судить о неразрешимости в целых числах и уравнения Ферма . Это тоже хорошо известный факт в теории чисел (в данной работе это утверждение является следствием более общего утверждения).
6. Судить о неразрешимости в целых числах уравнения Ферма , где
- натуральное число. Это тоже уже известный факт в теории чисел (в данной работе это утверждение является следствием более общего утверждения).
**********
Так как данное доказательство «Общего Утверждения» в этой работе проведено мною элементарными средствами, то думаю, и своё «Утверждение» великий Ферма вполне мог доказать подобным методом.
И последнее. Я думаю, что специалистам, наверное, известны ещё некоторые конкретные примеры (частные случаи уравнения ), подпадающих под доказываемое в данной работе «Общего Утверждения». Если такие примеры имеются, то в свою очередь это будет являться дополнительным подтверждением правильности выбранного пути доказательства вышеназванного «Общего Утверждения».
≥
ОБЩЕЕ УТВЕРЖДЕНИЕ, частным случаем которого является Великая теорема Ферма
1. Уравнение (
,
- натуральные числа) не имеет решений в отличных от нуля попарно взаимно простых целых числах
,
и
таких, чтобы
- было четным,
и
- нечетными целыми числами.
2. Но есть и «исключение» из данного утверждения: среди этих чисел ,
и
может быть либо
, либо
.
***********
Чтобы доказать «ОБЩЕЕ УТВЕРЖДЕНИЕ», необходимо рассмотреть 2 случая
для показателя q:
1) при
- натуральном;
2) при
- натуральном, а для этого достаточно рассмотреть случай
.
Утверждение 1, частным случаем которого является Великая теорема Ферма, для простого показателя
Часть 1
Уравнение (
,
- натуральные числа, где
при
- натуральном) не имеет решений в отличных от нуля попарно взаимно простых целых числах
,
и
таких, чтобы
- было четным,
и
- нечетными целыми числами.
Часть 2
Возможны случаи: либо , либо
.
**********
Последнее утверждение (либо , либо
) в дальнейшем будем называть «исключением» из общего правила.
*********
Часть первая (Утверждения 1)
Уравнение (
,
- натуральные числа, где
при
- натуральном) не имеет решений в отличных от нуля попарно взаимно простых целых числах
,
и
таких, чтобы
- было четным,
и
- нечетными целыми числами.
Доказательство
Понятно, что доказательство достаточно рассмотреть для - простого.
Докажем данное «Утверждение 1 » методом от противного. Предположим, что уравнение разрешимо в отличных от нуля попарно взаимно простых целых числах
,
и
. И если в конце доказательства мы придем к противоречию, доказав, что числа
,
и
не являются попарно взаимно простыми целыми числами, то это будет означать, что «Утверждение 1 » справедливо.
Из уравнения (1) следует:
(2),
где - четное целое число, т.к.
и
- нечетные;
≠ 0, т.к.
и
- взаимно простые нечетные целые числа, не равные нулю;
- нечетное целое число при
и
- нечетных,
- простом.
********
Примечание
То, что - нечетное число при
и
- нечетных, хорошо известный факт в теории чисел.
Для подтверждения данного факта достаточно использовать разложение бинома
Ньютона ,
,
, … и тогда получим для
:
- сумму трех нечетных слагаемых, равную нечетному числу.
Для :
- сумму пяти нечетных слагаемых, равную нечетному числу.
Для степени - простой можно доказать, что при
и
нечетных
(3) - сумма нечетных
слагаемых, равная нечетному числу (Алексеев С.Ф. Два обобщения классических формул // Квант. – 1988. - №10. – С. 23).
*******
Пусть (4),
где - нечетное число (на основании (3)).
Тогда уравнение (2) примет вид:
(5),
где - четное число, которое можно представить в виде
(6),
где - целое число (при
= 0 а = 0, что противоречит нашему допущению),
(4) – нечетное число.
Тогда из соотношения (5) с учетом (6) получаем:
, т.е.
(7), где
- целое число (
),
- натуральное число.
Сумму же нечетных чисел и
обозначим через
, т.е.
(8),
где - целое число (
, т.к.
и
- взаимно простые нечетные целые числа, не равные нулю).
Из (7) и (8) определим и
:
=>
=>
Откуда (11) - нечетное число при
- нечетном и
- четном, т.к.
, причем (12)
(явно) при
.
********
Вывод:
На основании (8) и (11) имеем: (13) - нечетное число;
из соотношений (7) и (12) имеем: (14) (явно) при
.
Это дополнительная информация о свойствах предполагаемых взаимно простых числах , которая в дальнейшем нам очень пригодится.
*******
Теперь попробуем выразить сумму квадратов чисел c и . Учитывая соотношения (9) и (10), получим:
Таким образом, получили следующее уравнение:
(15),
где - целые числа, которые, являясь решениями уравнения (15), в свою очередь, могут быть выражены через другие целые числа
следующим образом:
(16) - нечетное число при
- нечетном;
(17) - нечетное число при
- нечетном;
(18) - нечетное число при
- нечетном;
(19) - четное число.
Примечание: во всех последующих исследованиях (Случаях) нас не будут интересовать
t =0 и r=0 (при t =0 и
- четные из (16) и (17), при r=0
= 0 (из (19)) => а = 0 (из (6)), что противоречит нашему допущению).
*******
Примечание.
Общий вид уравнения (15) следующий:
(20) ,
целыми решениями которого (это известный факт в теории чисел) являются:
(21) ;
(22) ;
(23) ;
(24) , где
- целые числа.
То, что (21), …, (24) являются решениями уравнения (20), легко проверяется их подстановкой в данное уравнение (20), которое при этом превращается в тождество.
*******
Для простоты обозначим правые части уравнений (16), …, (19) буквами С, В, N, К, т.е.
= С
= В
= N
= К,
и рассмотрим случай, когда в правых частях уравнений (16), …, (19) перед С, В, N, К, стоят «плюсы» и выполняется Условие 1.
Условие1 (начало).
с = С
b = B
n = N
Случай «+».
(16+) = С - нечетное число при
- нечетном;
(17+) = В - нечетное число при
- нечетном;
(18+) = N - нечетное число при
- нечетном;
(19+) = К - четное число.
Казалось бы, все в порядке: четность в (16+), …, (19+) совпадает при
-нечетном с нашими предыдущими рассуждениями.
Однако не все так просто.
Помимо всего прочего, у нас есть еще две дополнительные информации (13) и (14) (о четности, заключенной в «Выводе» (стр.5)), вытекающие из предположения о том, что, вопреки условию «Утверждения 1» , допустим, существуют попарно взаимно простые целые числа .
Попробуем найти сумму , воспользовавшись их выражениями (16+) и (17+):
,
Характеристики
Тип файла документ
Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.
Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.
Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.