85594 (640668), страница 10
Текст из файла (страница 10)
**********
Вывод
Итак, после анализа полученных решений в Случаях 1,…, 8, уравнение (11) , где c и b – взаимно простые целые нечетные числа, имеет решения в следующих целых числах:
а) ; b
;
;
;
б) ;
;
;
.
********
Таким образом, само исследование решений уравнения (11) в случаях 1, …, 8 при доказательстве Утверждения 3 и его результат полностью совпадают с исследованием решений уравнения (11) (в аналогичных случаях при доказательстве Утверждения 2) и с его результатом.
Действительно, вот, например, результаты исследований уравнения (11) в первых 4-х случаях Условия 1 (Утверждение 2, Часть 2):
1. (12) 2. (12´)
(30´)
(13´) (28) (13)
(28´)
(14) (29) (14´)
(29´)
(15) (24) (15´)
(24´)
3. (12) (30´´) 4. (12´)
(30´´´)
(13´) (28) (13)
(28´)
(14) (29´´) (14´)
(29´´´)
(15´) (24´) (15)
(24).
А вот результаты исследований уравнения (11) в первых 4-х случаях Условия 1 (Утверждение 3, Часть 2):
1. (12) 2. (12´)
(30´)
(13´) (28) (13)
(28´)
(14) (29) (14´)
(29´)
(15) (24) (15´)
(24´)
3. (12) (30´´) 4. (12´)
(30´´´)
(13´) (28) (13)
(28´)
(14) (29´´) (14´)
(29´´´)
(15´) (24´) (15)
(24).
Наблюдается полное совпадение результатов. То же самое совпадение результатов наблюдается и в следующих за ними 4-х случаях.
*********
Нетрудно понять, что остальные случаи с 9-го по 28-й в данном доказательстве Утверждения 3 (подобные вышерассмотренным случаям 9, …, 28 при доказательстве Утверждений 1 и 2) никаких новых решений нам не дадут, кроме как:
либо , либо
, либо c и b не являются целыми числами, либо c и b – четные числа , чего не должно быть.
********
Из этого набора решений уравнения (11), нас, естественно, интересуют только те, которые могут являться решениями уравнения (1) (1), где
- нечетное натуральное число, т.е. либо
, либо
, которые таковыми и являются.
*******
Вывод: 2-я часть «Утверждения 3» доказана.
В результате исследования уравнения (1), мы имеем:
Вывод:
1. Уравнение (1) (
≥ 3 – нечетное натуральное, q = 4 = 2m, где m = 2) не имеет решений в отличных от нуля попарно взаимно простых целых числах
,
и
таких, чтобы
- было четным,
и
- нечетными целыми числами.
Возможны случаи: либо , либо
.
2. «Утверждение 3» нами полностью доказано.
*******
Примечание
Понятно, что приведенное сокращенное доказательство «Утверждения 3» (со ссылкой на предыдущее доказательство Утверждения 2), где рассматривается уравнение al+ b4 = c4 при ≥ 3 – нечетном натуральном и q = 4 = 2 m , где m = 2, распространяется и на показатель степени q = 2 m , где m > 2 – натуральном.
**********
На основании доказательства справедливости «Утверждения 1», «Утверждения 2» и «Утверждения 3» вытекает и справедливость «Общего утверждения».
ОБЩИЙ ВЫВОД
1. Уравнение (
,
- натуральные числа) не имеет решений в отличных от нуля попарно взаимно простых целых числах
,
и
таких, чтобы
- было четным,
и
- нечетными целыми числами.
2. Но есть и «исключение» из данного утверждения: среди этих чисел ,
и
может быть либо
, либо
.
Таким образом, «Общее утверждение» доказано.
ЛИТЕРАТУРА:
1. Алексеев С.Ф. Два обобщения классических формул // Квант. – 1988. - №10. – С. 23.
2.Постников М.М. Введение в теорию алгебраических чисел. – М., Наука. – 1982 - С. 13.
Май 2009 г., Скворцов А.П.
Уважаемые любители математики и специалисты!
Если не трудно, попробуйте разобраться с данной работой и по возможности ее оценить.
Если в ней есть что-то стоящее, интересное, то очень хотелось бы получить отзыв о данной работе.
Я убежден, что примененный мною метод в данной работе позволит провести анализ и некоторых других уравнений на их разрешимость в целых числах.
Предлагаю вашему вниманию перечень некоторых моих работ по физике и математике, с некоторыми из них ознакомлены специалисты некоторых ВУЗов г. Томска, с другими – учителя и учащиеся г. Колпашева. А работа по физике (я сам учитель физики) о существовании гипотетических гравитационно-временных волн («Гравитация и время») в популярном изложении опубликована на страницах журнала «Знак вопроса» №4-2004 г.
Работы по математике:
-
Построение с помощью циркуля и линейки отрезка, равного произведению двух других отрезков.
-
Построение с помощью циркуля и линейки отрезка, равного отношению двух других отрезков.
-
Нахождение действительных корней приведенного квадратного уравнения с помощью циркуля и линейки.
4. Решение уравнения в целых числах при
- натуральном.
5. Доказательство неразрешимости в рациональных ненулевых числах уравнения р1+ р2 = р3, где произведение р1 р2 р3 = R3, R – рациональное число (или рациональная функция), р1, р2 и р3 могут быть не только рациональными числами, но и рациональными функциями.
6. Доказательство неразрешимости в рациональных ненулевых числах системы
р 1+р2+р3 =р4
р1 р2 р3 р4 = ,
где k может принимать значения k = 1; 2; 3; 4, и р1, р2 , р3 и р4 могут быть не только рациональными числами, но и рациональными функциями.
Мне можно писать по электронному адресу: skvorsan@mail.ru
Мой почтовый адрес: 636460 г. Колпашево Томской обл.,
м/р-н Геолог, д.18, кв.11
тел.: 8 (38 254) 5 79 59.
С уважением, А.П. Скворцов.