85594 (640668), страница 10

Файл №640668 85594 (Доказательство утверждения, частным случаем которого является великая теорема Ферма) 10 страница85594 (640668) страница 102016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 10)

**********

Вывод

Итак, после анализа полученных решений в Случаях 1,…, 8, уравнение (11) , где c и b – взаимно простые целые нечетные числа, имеет решения в следующих целых числах:

а) ; b ; ; ;

б) ; ; ; .

********

Таким образом, само исследование решений уравнения (11) в случаях 1, …, 8 при доказательстве Утверждения 3 и его результат полностью совпадают с исследованием решений уравнения (11) (в аналогичных случаях при доказательстве Утверждения 2) и с его результатом.

Действительно, вот, например, результаты исследований уравнения (11) в первых 4-х случаях Условия 1 (Утверждение 2, Часть 2):

1. (12) 2. (12´) (30´)

(13´) (28) (13) (28´)

(14) (29) (14´) (29´)

(15) (24) (15´) (24´)

3. (12) (30´´) 4. (12´) (30´´´)

(13´) (28) (13) (28´)

(14) (29´´) (14´) (29´´´)

(15´) (24´) (15) (24).

А вот результаты исследований уравнения (11) в первых 4-х случаях Условия 1 (Утверждение 3, Часть 2):

1. (12) 2. (12´) (30´)

(13´) (28) (13) (28´)

(14) (29) (14´) (29´)

(15) (24) (15´) (24´)

3. (12) (30´´) 4. (12´) (30´´´)

(13´) (28) (13) (28´)

(14) (29´´) (14´) (29´´´)

(15´) (24´) (15) (24).

Наблюдается полное совпадение результатов. То же самое совпадение результатов наблюдается и в следующих за ними 4-х случаях.

*********

Нетрудно понять, что остальные случаи с 9-го по 28-й в данном доказательстве Утверждения 3 (подобные вышерассмотренным случаям 9, …, 28 при доказательстве Утверждений 1 и 2) никаких новых решений нам не дадут, кроме как:

либо , либо , либо c и b не являются целыми числами, либо c и bчетные числа , чего не должно быть.

********

Из этого набора решений уравнения (11), нас, естественно, интересуют только те, которые могут являться решениями уравнения (1) (1), где - нечетное натуральное число, т.е. либо , либо , которые таковыми и являются.

*******

Вывод: 2-я часть «Утверждения 3» доказана.

В результате исследования уравнения (1), мы имеем:

Вывод:

1. Уравнение (1) ( ≥ 3 – нечетное натуральное, q = 4 = 2m, где m = 2) не имеет решений в отличных от нуля попарно взаимно простых целых числах , и таких, чтобы - было четным, и - нечетными целыми числами.

Возможны случаи: либо , либо .

2. «Утверждение 3» нами полностью доказано.

*******

Примечание

Понятно, что приведенное сокращенное доказательство «Утверждения 3» (со ссылкой на предыдущее доказательство Утверждения 2), где рассматривается уравнение al+ b4 = c4 при ≥ 3 – нечетном натуральном и q = 4 = 2 m , где m = 2, распространяется и на показатель степени q = 2 m , где m > 2 – натуральном.

**********

На основании доказательства справедливости «Утверждения 1», «Утверждения 2» и «Утверждения 3» вытекает и справедливость «Общего утверждения».

ОБЩИЙ ВЫВОД

1. Уравнение ( , - натуральные числа) не имеет решений в отличных от нуля попарно взаимно простых целых числах , и таких, чтобы - было четным, и - нечетными целыми числами.

2. Но есть и «исключение» из данного утверждения: среди этих чисел , и может быть либо , либо .

Таким образом, «Общее утверждение» доказано.

ЛИТЕРАТУРА:

1. Алексеев С.Ф. Два обобщения классических формул // Квант. – 1988. - №10. – С. 23.

2.Постников М.М. Введение в теорию алгебраических чисел. – М., Наука. – 1982 - С. 13.

Май 2009 г., Скворцов А.П.

Уважаемые любители математики и специалисты!

Если не трудно, попробуйте разобраться с данной работой и по возможности ее оценить.

Если в ней есть что-то стоящее, интересное, то очень хотелось бы получить отзыв о данной работе.

Я убежден, что примененный мною метод в данной работе позволит провести анализ и некоторых других уравнений на их разрешимость в целых числах.

Предлагаю вашему вниманию перечень некоторых моих работ по физике и математике, с некоторыми из них ознакомлены специалисты некоторых ВУЗов г. Томска, с другими – учителя и учащиеся г. Колпашева. А работа по физике (я сам учитель физики) о существовании гипотетических гравитационно-временных волн («Гравитация и время») в популярном изложении опубликована на страницах журнала «Знак вопроса» №4-2004 г.

Работы по математике:

  1. Построение с помощью циркуля и линейки отрезка, равного произведению двух других отрезков.

  2. Построение с помощью циркуля и линейки отрезка, равного отношению двух других отрезков.

  3. Нахождение действительных корней приведенного квадратного уравнения с помощью циркуля и линейки.

4. Решение уравнения в целых числах при - натуральном.

5. Доказательство неразрешимости в рациональных ненулевых числах уравнения р1+ р2 = р3, где произведение р1 р2 р3 = R3, R – рациональное число (или рациональная функция), р1, р2 и р3 могут быть не только рациональными числами, но и рациональными функциями.

6. Доказательство неразрешимости в рациональных ненулевых числах системы

р 1234

р1 р2 р3 р4 = ,

где k может принимать значения k = 1; 2; 3; 4, и р1, р2 , р3 и р4 могут быть не только рациональными числами, но и рациональными функциями.

Мне можно писать по электронному адресу: skvorsan@mail.ru

Мой почтовый адрес: 636460 г. Колпашево Томской обл.,

м/р-н Геолог, д.18, кв.11

тел.: 8 (38 254) 5 79 59.

С уважением, А.П. Скворцов.

Характеристики

Тип файла
Документ
Размер
18,39 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов сочинения

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6430
Авторов
на СтудИзбе
306
Средний доход
с одного платного файла
Обучение Подробнее