85594 (640668), страница 8
Текст из файла (страница 8)
т.е. в уравнении a2+ b4 = c4 b и c
=> в уравнении
(1) при
- четном числе b
и c
,
т.е. случаи (либо b = ± 1, либо c = ± 1) ОТСУТСТВУЮТ.
********
Вывод: 2-я часть «Утверждения 2» доказана.
*******
В результате исследования уравнения (1) мы имеем:
Вывод:
1. Уравнение (1) , где
≥2 - четное не имеет решений в попарно простых целых числах a, b, и c таких, чтобы
- было четным,
и
- нечетными целыми числами.
2. «Утверждение 2» нами полностью доказано.
*******
Примечание
-
Понятно, что приведенное доказательство «Утверждения 2» для q = 4 = 2m, где m = 2, распространяется и на показатель степени q=2m при m>2 – натуральном.
-
Если уравнение al+ b4 = c4, где
≥2 - четное, неразрешимо в попарно простых целых числах a, b, и c, то и уравнение a4+ b4 = c4 не только неразрешимо в этих же числах, но и вообще неразрешимо ни в каких других целых числах (не являющихся попарно взаимно простыми целыми числами).
Вывод : Великая теорема Ферма для показателя l= q= 4 доказана.
3. Результат доказательства, а именно четность чисел a, b, c в уравнении al+ b4 = c4 ( ≥2 - четное), а, следовательно, в уравнении a4+ b4 = c4 дает возможность в этом уравнении применить метод бесконечного спуска, о чем в свое время не только упоминалось самим Ферма, но и им использовалось.
На основании Выводов о Великой теореме Ферма (стр.34, стр.49) получаем окончательный вывод.
Окончательный «Вывод»: Великая теорема Ферма доказана.
********
Утверждение 3
Часть 1
Уравнение (
≥ 3 – нечетное натуральное, q = 4 = 2m, где m = 2) не имеет решений в отличных от нуля попарно взаимно простых целых числах
,
и
таких, чтобы
- было четным,
и
- нечетными целыми числами.
Часть 2
Возможны случаи: либо b = ± 1, либо c = ± 1.
*********
Часть первая (Утверждения 3)
Уравнение (
≥ 3 – нечетное натуральное, q = 4 = 2m, где m = 2) не имеет решений в отличных от нуля попарно взаимно простых целых числах
,
и
таких, чтобы
- было четным,
и
- нечетными целыми числами.
Доказательство
Первая часть доказательства «Утверждения 3» аналогична «Части первой» доказательства «Утверждения 2».
Итак, имеем уравнение (1), где
≥ 3 – нечетное натуральное, числа a, b, c (если, конечно, они существуют) – попарно взаимно простые целые числа (это наше допущение – вопреки «Утверждению 3»), среди которых только одно четное число a.
Из уравнения (1) следует:
=>
(2).
Пусть (3), где
и β - целые числа, отличные от нуля и c2 + b2 = 2 β (4), где β – нечетное число при с и b – нечетных.
******
Примечание
То, что β в уравнении (4) нечетное число, хорошо известный факт в теории чисел, который мы ранее уже учитывали («Примечание», стр. 35).
Представим нечетные числа b и c в виде:
b = 2n1 + 1; c = 2n2 + 1, где n1 и n2 - произвольные целые числа. Тогда
b2 + c2 = (2n1 + 1)2 + (2n2 + 1)2 = 2 [2 (n12+n22+n1+n2) + 1],
где в квадратных скобках нечетное число, что и требовалось доказать
*******
Тогда из уравнения (2) следует (с учетом (3) и (4)):
=
, где c2 + b2 ≠ 0, т.к. c ≠ 0, b ≠ 0, т.е.
(5),
где k – целое число, отличное от нуля, т.к. c и b взаимно простые целые числа.
Из соотношений (4) и (5) определяем b2 и c2:
=>
=>
Откуда β = b2 + 2l-2k (8) - нечетное число (из (4)) при b – нечетном и 2l-2k - четном, т.к. ≥ 3 – нечетное натуральное число.
Вывод:
1. Из соотношения (4) имеем:
(9) - нечетное число.
2. Из соотношения (5) имеем:
(10) пропорционально 2 (явно), т.е.
- четное число.
Это дополнительная информация о свойствах предполагаемых взаимно простых числах , которая в дальнейшем нам очень пригодится.
*******
Теперь попробуем выразить сумму четвертых степеней чисел c и . Учитывая соотношения (6) и (7), получим:
,
т.е. (11),
где - целые числа, которые, в свою очередь, как мы знаем из предыдущего доказательства «Утверждения 1» (для
), могут быть выражены через другие целые числа
следующим образом:
(12) - нечетное число при
- нечетном;
(13) - нечетное число при
- нечетном;
(14) - нечетное число при
- нечетном;
(15) - четное число.
Примечание: во всех последующих исследованиях (Случаях) нас не будут интересовать t =0 и r=0 (при t =0 и
- четные из (12) и (13), при r=0
= 0 (из (15)) => а = 0 (из (3)), что противоречит нашему допущению).
Для простоты опять (как в утверждениях 1 и 2) обозначим правые части уравнений (12), …, (15) буквами С, В, N, К, т.е.
= С
= В
= N
= К ,
и рассмотрим случай, когда в правых частях уравнений (12), …, (15) перед С, В, N, К, стоят «плюсы» и выполняется Условие1.
Условие1 (начало).
с2 = С
b2 = B
= N
Случай «+».
(12+) - нечетное число при
- нечетном;
(13+) - нечетное число при
- нечетном;
(14+) - нечетное число при
- нечетном;
(15+) - четное число.
Казалось бы, все нормально: четность чисел в (12+), …, (15+) совпадают при
-нечетном с нашими предыдущими рассуждениями.
Однако не все так просто.
Помимо всего прочего, у нас есть еще две дополнительные информации (9) и (10) (о четности, заключенной в «Выводе» (стр.36)), вытекающие из предположения о том, что, вопреки условию «Утверждения 2» , допустим, существуют попарно взаимно простые целые числа .
Попробуем найти сумму , воспользовавшись их выражениями (12+) и (13+):
,
т.е. => (
) пропорционально 4, откуда следует, учитывая (9) в «Выводе» (стр.36),
!
Т.е., вопреки «Выводу», является не нечетным, а четным числом, что возможно (из (14)) при
-четном.
Однако, если - четное, то
(в (12+) и (13+)) являются четными, т.е. в уравнениях (2)
и (1)
числа
- четные, а потому не являются попарно взаимно простыми целыми числами.
Мы пришли к противоречию в Случае «+» с нашим предположением о существовании у уравнения (1) попарно взаимно простых целых решений.
*******
Вывод. Следовательно, это уравнение (1) в данном Условии 1(начало) не имеет решений в целых попарно взаимно простых
отличных от нуля числах, где
- нечетное натуральное число.
********
Мы рассмотрели случай, когда перед скобками в (12+), …, (15+) стояли «плюсы».
Случай, когда перед теми же скобками стоят «минусы» (Случай «-»), аналогичен вышерассмотренному. Вывод тот же. (Смотри Случай «-» на стр.8.)
*********
Примечание
Осталось рассмотреть еще 14 случаев, когда перед С, В, N, К стоят всевозможные знаки (плюсы и минусы). Но об этом - во 2-ой части данного Утверждения 3.
********
Т.к. уравнение (11) симметрично для с2 и b2, (для уравнения 11 они равнозначны), то с2 и b2 могут меняться своими выражениями (C и В). Это свойство назовем «новым свойством ». Поэтому аналогичны вышерассмотренному и случаи («Новые» случаи «+» и «-»), когда опять же перед теми же скобками стоят одинаковые знаки.
Условие 2 (начало).
с2 = В
b2 = С
= N
«Новые» случаи «+» и «-».
(12´±) c2 =± В
(13´±) b2 =±С
(14±) =± N
(15±) =±К.
И в этом случае сумма пропорциональна 4, откуда следует, (учитывая (13) в «Выводе» (стр.36)),
!
Т.е., вопреки «Выводу», и в этих «Новых» случаях «+» и «-» является не нечетным, а четным числом, что возможно(из (14±)) при
-четном.
Однако, если - четное, то
(в ((12´±) и ((13´±)) являются четными, т.е. в уравнениях (2) и (1) числа
- четные, а потому не являются попарно взаимно простыми целыми числами.
Мы пришли к противоречию (в «Новых» случаях «+» и «-») с нашим предположением о существовании у уравнения (1) попарно взаимно простых целых решений.
********
Вывод. Следовательно, это уравнение (1) в данном Условии 2 (начало) не имеет решений в целых попарно взаимно простых отличных от нуля числах.
*******
Примечание
Осталось исследовать еще 14 случаев, рассматривающих «новые свойства », когда перед С, В, N, К стоят всевозможные знаки (плюсы и минусы).
Но об этом во 2-ой части данного Утверждения 3.
********
Уравнение (11) симметрично и для и для
(для уравнения (11) они равнозначны), которые тоже могут меняться своими выражениями (N и К). Это свойство назовем «похожим свойством
и
». А это означает, что нам придется рассмотреть еще 16 «похожих» случаев (с 1-го по 14 и случаи «+» и «-», в которых
и
меняются своими выражениями (N и К)).
Условие 3.
с2 = С