85594 (640668), страница 5
Текст из файла (страница 5)
b= С (17+C), b= В (17),
n=- N (18´), n= -N (18´),
-K (19´),
-K (19´).
Окончательные решения в случае 2:
,
,
где - взаимно простые нечетные целые числа
Воспользуемся вышерассмотренным «Соображением» и его «Выводом».
Т.к. «Общие свойства для с и b » (сb= - СВ = const´, с – b= - С - В = const´´, с – b= - 2К = const´´´ ) выполняются, то Случаи 21 и 2 имеют одинаковый вид окончательных решений уравнения (15), т.е.
,
,
,
,
где - взаимно простые нечетные целые числа.
*********
«Новый» случай 22
(Отличающийся «новым свойством » от случая 8: с = -С, b= В, n = N,
K)
Случай 22. Случай 1.
с = В (16+B), с = С (16),
b= -С (17-C), b=- В (17´),
n= N (18), n= N (18),
K (19),
K (19)
Окончательные решения в случае 1:
,
,
,
где - взаимно простые нечетные целые числа.
Воспользуемся вышерассмотренным «Соображением» и его «Выводом».
Т.к. «Общие свойства для с и b » (сb= - СВ = const´, с – b= С + В = const´´, с – b= 2К = const´´´ ) выполняются, то Случаи 22 и 1 имеют одинаковый вид окончательных решений уравнения (15), т.е.
,
,
,
,
где - взаимно простые нечетные целые числа.
**********
Вывод
Таким образом, в «Новых» случаях 15,…, 22 новых возможных решений уравнения (15) не выявили.
*********
«Новый» случай 23
(Отличающийся «новым свойством » от случая 9: с = С, b= В, n = -N,
K)
Случай 23. Случай 12.
с = В (16+B), с = - С (16´),
b= С (17+C), b= - В (17´),
n= - N (18´), n= - N (18´),
K (19),
K (19)
Окончательный вывод в случае 12: c и b – четные, чего не должно быть.
Воспользуемся вышерассмотренным «Соображением» и его «Выводом».
Т.к. «Общие свойства для с и b » (сb= СВ = const´, с – b= -С + В = const´´, с – b= 2К = const´´´ ) выполняются, то Случаи 23 и 12 имеют одинаковый вид окончательных решений уравнения (15), т.е. c и b – четные, чего не должно быть.
Мы пришли к противоречию с нашим предположением о существовании у уравнения (1) попарно взаимно простых целых решений.
********
«Новый» случай 24
(Отличающийся «новым свойством » от случая 10: с = -С, b= -В, n = N,
-K)
Случай 24. Случай 11.
с = -В (16-B), с = С (16),
b=-С (17-C), b= В (17),
n= N (18), n= N (18),
-K (19´),
-K (19´).
Окончательный вывод в случае 11: c и b – четные, чего не должно быть.
Воспользуемся вышерассмотренным «Соображением» и его «Выводом».
Т.к. «Общие свойства для с и b » (сb= СВ = const´, с – b= С - В = const´´, с – b= - 2К = const´´´ ) выполняются, то Случаи 24 и 11 имеют одинаковый вид окончательных решений уравнения (15), т.е. c и b – четные, чего не должно быть.
Мы пришли к противоречию с нашим предположением о существовании у уравнения (1) попарно взаимно простых целых решений.
*******
«Новый» случай 25
(Отличающийся « новым свойством » от случая 11: с = С, b= В, n = N,
-K)
Случай 25. Случай 10.
с = В (16+B), с = - С (16´),
b= С (17+C), b= - В (17´),
n= N (18), n= N (18),
-K (19´),
-K (19´).
Окончательный вывод в случае 10: c и b – четные, чего не должно быть.
Воспользуемся вышерассмотренным «Соображением » и его «Выводом».
Т.к. «Общие свойства для с и b (сb= СВ = const´, с – b= -С + В = const´´, с – b= - 2К = const´´´ ) выполняются, то Случаи 25 и 10 имеют одинаковый вид окончательных решений уравнения (15), т.е. c и b – четные, чего не должно быть.
Мы пришли к противоречию с нашим предположением о существовании у уравнения (1) попарно взаимно простых целых решений.
*********
«Новый» случай 26
(Отличающийся «новым свойством » от случая 12: с = - С, b=- В, n = -N,
K)
Случай 26. Случай 9.
с = - В (16-B), с = С (16),
b= - С (17-C), b= В (17),
n= - N (18´), n= - N (18´),
K (19),
K (19).
Окончательный вывод в случае 9: c и b – четные, чего не должно быть.
Воспользуемся вышерассмотренным «Соображением» и его «Выводом».
Т.к. «Общие свойства для с и b » (сb= СВ = const´, с – b= С - В = const´´, с – b= 2К = const´´´ ) выполняются, то Случаи 26 и 9 имеют одинаковый вид окончательных решений уравнения (15), т.е. c и b – четные, чего не должно быть.
Мы пришли к противоречию с нашим предположением о существовании у уравнения (1) попарно взаимно простых целых решений.
********
«Новый» случай 27
(Отличающийся «новым свойством » от случая 13: с = С, b= В, n = -N,
-K)
Случай 27. Случай «-».
с = В (16+B), с = - С (16´),
b= С (17+C), b= - В (17´),
n= - N (18´), n= - N (18´),
-K (19´),
-K (19´).
Окончательный вывод в случае «-»: c и b – четные, чего не должно быть.
Воспользуемся вышерассмотренным «Соображением» и его «Выводом».
Т.к. «Общие свойства для с и b » ( сb= СВ = const´, с – b= - С + В = const´´, с – b= - 2К = const´´´ ) выполняются, то Случаи 27 и «-» имеют одинаковый вид окончательных решений уравнения (15), т.е. c и b – четные, чего не должно быть.
Мы пришли к противоречию с нашим предположением о существовании у уравнения (1) попарно взаимно простых целых решений.
********
«Новый» случай 28
(Отличающийся «новым свойством » от случая 14: с = - С, b= -В, n = N,
K)
Случай 28. Случай «+».
с = - В (16-B), с = С (16),
b= - С (17-C), b= В (17),
n= N (18), n= N (18),
K (19),
K (19).
Окончательный вывод в случае «+»: c и b – четные, чего не должно быть.
Воспользуемся вышерассмотренным «Соображением » и его «Выводом».
Т.к. «Общие свойства для с и b (сb= СВ = const´, с – b= С - В = const´´, с – b= 2К = const´´´ ) выполняются, то Случаи 28 и «+» имеют одинаковый вид окончательных решений уравнения (15), т.е. c и b – четные, чего не должно быть.
Мы пришли к противоречию с нашим предположением о существовании у уравнения (1) попарно взаимно простых целых решений.
********
Вывод
1. Таким образом, «Новые» случаи 23,…, 28 новых возможных решений уравнения (15) не выявили.
2. Условия 1 и 2 ( продолжения ) Утверждения(1) нами рассмотрены.
*********
Итак, уравнение (15) , если c и b – взаимно простые целые нечетные числа, имеет решение (после анализа всех полученных решений) только в следующих целых числах:
а) ;
;
;
;
б) ;
;
;
.
А это в свою очередь означает, что и рассматриваемое уравнение (
,
- натуральные числа, где
при
- натуральном) может иметь целые решения либо при
, либо при
.
************
Вывод: 2-я часть «Утверждения 1» доказана.
В результате исследования уравнения (1) мы имеем:
Вывод 1. Уравнение (1) (
,
- натуральные числа,
при
- натуральном) не имеет решений в отличных от нуля попарно взаимно простых целых числах
,
и
таких, чтобы
- было четным,
и
- нечетными целыми числами.
Возможны случаи: либо , либо
.
*******
В качестве подтверждения можно рассмотреть такой пример.
Пример
Нетрудно доказать вышерассмотренным методом, что уравнение (42), где
- натуральное число, a – четное, b и c нечетные целые числа, не имеет решений в отличных от нуля попарно взаимно простых целых числах a, b, c. (Хотя ход доказательства несколько отличается, т.к.
=
= с + b - число четное при q = 2 и b и c нечетных целых числах).
При «Исключением» являются
, или
.
(При «Исключением» являются, например,
или
, при которых а = 2 и выполняется тождество
(этот случай рассматривать не будем).
Действительно, решениями уравнения, например, a3 = c2 - b2 (43) являются (это хорошо известно в теории чисел) следующие выражения:
a = α2 – δ2 - четное число при α и δ – нечетных или четных.
c = α3 + 3αδ2 - четное число при α и δ – нечетных или четных.
b = 3α2δ + δ3 - четное число при α и δ – нечетных или четных.
(Такой же результат получается (a, c, b – четные числа) для любого уравнения
(42), где
- натуральное.)
Однако вернемся к уравнению (43) a3 = c2 - b2.
«Исключением» являются следующие его решения:
1. b = ±1; c = ±3; a = 2 (при r = 1 и = ±3);
2. b = 3; c = ±1; a = -2 (при r = -1 и
=
3),
при которых получаем соответственно тождества:
1. 23 ≡ (±3)2 – (±1)2
2. (-2)3 ≡ (±1)2 – (±3)2
**********
Примечание.
-
Великая теорема Ферма для
доказывается аналогичным способом, примененным при доказательстве «Утверждения 1», в результате чего возникает «противоречие» при оценке четности чисел a, b, c. Это мы покажем ниже при доказательстве «Утверждения 2».
-
Для степени p = 2 в уравнении
такого «противоречия» при оценке четности чисел a, b, c не возникает.
-
Данное «Утверждение 1» автоматически доказывает справедливость Великой теоремы Ферма для показателя
простом, т.к. она является частным случаем этого «Утверждения 1» при
простом. Имея дело с уравнением (44)
, где
простое, a, b, c - целые отличные от нуля числа, становится возможным применение метода бесконечного спуска, о чем в свое время упоминалось самим Ферма.
«Исключение» (b = ±1 или c = ±1) в «Утверждении 1» на Великую теорему Ферма не распространяется, т.к. в теории чисел хорошо известно, что целые числа a, b, c, удовлетворяющие соотношению (44) (если такие существуют) должны удовлетворять неравенствам | a | > p, | b | > p, | c | > p (Постников М.М. Введение в теорию алгебраических чисел. – М. – Наука. – 1982. - С. 13).
Вывод: Великая теорема Ферма для степени простом доказана.
********