31221-1 (630654), страница 8

Файл №630654 31221-1 (Математические модели в естествознании) 8 страница31221-1 (630654) страница 82016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 8)

.

, .

Число -вероятность того, что данный аллель не являлся мигрантом ни в одном из десяти предшествующих поколений. Тем самым, современное темнокожее население США наследовало около генов от своих африканских предков, а генов получило от белых предков. Неудивительно, что темнокожие американцы по внешнему виду существенно отличаются от африканцев. Отметим, что число примерно соответствует проценту смешанных браков.

Приведенные вкладки носят приближенный характер. Если в аналогичных расчетах использовать частоты других аллелей, то получатся несколько другие результаты. Кроме того, интенсивность потока генов в разных регионах США различна. Однако, тенденция к выравниванию частот аллелей между темнокожим и белым населением сохраняется.

Рассмотрим островную модель Райта. Эта модель учитывает как миграции, так и процессы отбора. Она описывает популяцию аллелей и , которая состоит из субпопуляций. Обозначим через , где , доли субпопуляций (вероятности того, что что выбранный аллель принадлежит -ой популяции). Будем считать, что эти доли из поколения в поколение неизменны. Субпопуляции связаны между собой меграционными процессами. Непосредственно после появления на свет нового поколения из каждой субполяции с вероятностью аллели (их носители) совершают путешествие в некий “общий котел” аллелей (внешний мир). Считаем, что вероятность миграции для всех субпопуляций одна и та же. В “общем котле” аллели перемешиваются, “забывают” о своем “географическом” происхождении и мигрируют в субпопуляции. Пусть вероятность обнаружить вернувшихся путешественников (доля мигрантов) для всех субпопуляций одна и та же и равна , т.е. совпадает с вероятностью исхода юных аллелй из субпопуляций. Далее, в субпопуляциях начинается процесс отбора. Он происходит на уровне аллелей (для генотипов имеет место отбор геометрического типа). Пусть и -вероятности того, что в -ой субпопуляции соответственно аллели и доживают до этапа размножения (эти числа также называются коэффициентами отбора).

Получим эволюционные уравнения. Пусть и -частоты аллелей и в -ой субпопуляции в момент появления на свет -ого поколения. Средние частоты аллелей и во всей популяции в момент рождения -ого поколения суть:

, . (26)

Эти же числа -частоты аллелей в “общем котле”. Для произвольной -ой субпопуляции после завершения миграционных процессов имеют место следующие частоты аллелей и :

, .

Полная вероятность того, что после завершения миграции в -ой субпопуляции аллель -ого поколения доживет до этапа размножения определяется следующим образом:

. (27)

Используя формулу Бейеса (теорема гипотез) получим частоты и в -ом поколении для -ой субпопуляции к моменту начала этапа размножения:

, .

Такие же частоты имеют гаметы -ого поколения и вновь появившиеся аллели и следующего -ого поколения. Тем самым, получаем эволюцинные уравнения для частот:

, (28)

. (29)

где -номера субпопуляций. В (28), (29) средние частоты и заданы формулами (26), а нормировочные коэффициенты -формулами (27). Отметим, что отображение (28), (29) не меняет вид после замены и . В связи с этим положим и , где . Если , то аллель имеет преимущество в борьбе за существование перед аллелем . Если же , то преимущество - за аллелем . Коэффициент легко преобразовать к виду:

.

В результате формулы (28) приобретают вид:

, (30)

Пусть во всех субпопуляциях отбор не происходит, т.е. . Используя (30) для средней частоты аллеля получаем:

Средние частоты аллелей сохраняются. Из (30) получаем, что с ростом номера поколения частоты . Результат естественен: миграция выравнивает частоты.

Предположим, что во всех субпопуляциях отбор действует против аллеля , т.е. . Предположим, что в -ом поколении хотя бы для одной субпопуляции частота аллеля меньше единицы. Очевидно, что и средняя частота аллеля . Тогда для всех субпопуляций получаем: . В этом случае из (30) следует, что . Для средней частоты выполнено неравенство , которое является строгим, пока по крайней мере в одной субпопуляции частота аллеля не равна единице. Последовательность монотонно растет. Она ограничена, а, следовательно, имеет предел. В предельной точке приращения нет, а это возможно только, если для всех субпопуляций . Тем самым, происходит повсеместное вытеснение аллеля . В случае, когда отбор действует против аллелей (т.е. ), совершенно аналогичные рассуждения показывают, что из популяции вытесняется аллель .

Направление отбора в разных субпопуляциях может быть различным -числа имеют разные знаки. В этом случае проверка сходимости итерационного процесса (30) представляет собой не простую задачу. Для равновесных частот и ( неподвижных точек отображения) получаем систему связанных между собой уравнений:

. (31)

Рассмотрим два частных случая. Пусть параметры малы. Смысл допущения заключается в том, что влияние миграции более существенно, чем процесс отбора. Уравнения (31) перепишем в виде:

. (32)

Отбрасывая малые слагаемые, приближенно получим: либо , либо . Второй вариант невозможен т.к. . Из (32) с точностью до слагаемых порядка получаем:

.

Поскольку , получаем, что либо , либо , или же удовлетворяет соотношению:

. (33)

Заметим, что правая часть уравнения -монотонно растущая функция от . Действительно, для тех , где , сдагаемые монотонно убывают. Наоборот, если , то соответствующие слагаемые монотонно растут. Пусть , т.е. отбор интегрально действует против аллелей . Тогда при правая часть уравненния положительна. Она положительна при всех , и уравнение (33) не имеет корней для . Если же , т.е. отбор интегрально действует против аллелей , то зеркальные рассуждения показывают, что уравнение также не может иметь состояний равновесия. Тем самым, при интенсивной миграции один из аллелей , или вытесняется из популяции. Какой конкретно аллель вытесняется, определяется знаком величины (если она положительна, то аллели имеют преимущество, и, наоборот, если она отрицательна, то преимущество принадлежит аллелям ). Прогнозы модели полностью согласуются с биологическим смыслом.

Пусть теперь . Перепишем уравнения (31) в виде:

.

Каждое из имеет два корня:

.

Обратим внимание, что полученные формулы не задают в явном виде решение системы (31), поскольку в правых частях фигурирует средняя частота , которая сама выражается через . Упростим формулу для корней. Деля числитель и знаменатель дроби на и пренебрегая слагаемыми порядка и по отношению к слагаемым порядка , последовательно получим:

,

,

.

Здесь использовано то, что для . Для получаем: . В свою очередь, для получаем: . Найдем среднюю частоту аллеля . Пусть для и для . Тогда, усредняя частоты в субпопуляциях, получим:

.

Отсюда следует, что

.

Средняя частота аллеля найдена. Тем самым, найдены и частоты аллелей в субпопуляциях. В тех субпопуляциях, где отбор действует против аллелей , частоты аллелей близки к единице. Наоборот, если отбор действует против аллелей , их частоты близки к нулю. Предсказания модели полностью согласуются с биологическим смыслом.

Дрейф генов

Дрейф генов -это случайные отклонения частот аллелей от теоретически ожидаемых, возникающие в результате недостаточного объема выборки. Такие явления часто называют ошибками выборки. Дрейф генов постоянно происходит в популяциях, поскольку их численность всегда конечна. Дополнительно заметим, что правильное представление о численности популяции дает не общее число особей, а число особей дающих начало следующему поколению. Действительно, только они дают вклад в генофонд следующего поколения.

Будем рассуждать в терминах аллелей, не переходя к генотипам. Рассмотрим популяцию аллелей и . Пусть априорно их частоты суть и . Случайным образом сформируем выборку из аллелей, которые оставят потомство. Пусть -число аллелей в выборке. Согласно теореме Муавра -Лапласа вероятность события , где , стремится при к числу . Здесь -нормальное распределение. В частности, если , то . Для эмпирической частоты аллеля в выборке получаем оценку: , которая выполнена с вероятностью . Поскольку , то . Чем длиннее выборка, тем эмпирическая частота ближе к априорной. Например, при получаем . Наоборот, при эмпирическая частота аллеля может принимать лишь одно из трех значений , т.е. эмпирическая частота в общем случае далека от априорной.

Характеристики

Тип файла
Документ
Размер
8,97 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов ответов (шпаргалок)

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7035
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее