31221-1 (630654), страница 7

Файл №630654 31221-1 (Математические модели в естествознании) 7 страница31221-1 (630654) страница 72016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 7)

.

Если аллель не потерян в первом поколении, то он может быть потерян во втором поколении. Вычислим вероятность потери аллеля за два поколения. Пусть в результате скрещивания особей и в первом поколении появилось потомков. Вероятность того, что потомков будут относиться к генотипу суть (биномиальное распределение). Будем считать, что особи первого поколения скрещиваются только с особями генотипа (генотип редок). Вероятность того, что ни одна из особей первого поколения генотипа не оставит потомство, имеющее аллель будет равна , где, напомним, - вероятность этого явления для одной особи. Если в первом поколении было потомков от скрещивания особей и нулевого поколения, то вероятность потери аллеля во втором поколении равна

.

Наконец, получаем полную вероятность потери аллеля во втором поколении (включая вероятность того, что он потерян уже в первом поколении):

Итак, более половины мутаций будут потеряны потомками за два поколения, Можно рассчитать вероятность потери мутации и в последующих поколениях. Тенденция понятна. Большинство мутаций будет утеряно в течении нескольких поколений, даже, если некоторые из них благоприятны в борьбе за выживание. Приблизительно говоря, для вновь появившегося аллеля не столь опасна вероятность гибели (в модели возможность гибели не учитывалась). Гораздо страшнее потеряться при передаче в следуюшему поколению.

Давление повторных мутаций

Мы проследили за судьбой единичной мутации и убедились, что вероятность потери мутировавшего аллеля с ростом номера поколения растет. Однако, в каждом новом поколении вновь возникают мутации. Темп мутирования при постоянных условиях для каждого локуса из поколения в поколение остается достаточно стабильным.

Пусть - темп мутирования, т.е. вероятность замены аллеля на в следующем поколении. Обозначим через и соответственно частоты аллелей и в -ом поколении. Тогда в следующем поколении частота аллеля увеличивается на за счет уменьшения частоты аллеля на :

, .

Из первого уравнения получаем . Поскольку , то . Вследствие малости величины имеем и . При частота , т.е. ростом номера поколения все аллели превращаются в . Этот процесс чрезвычайно медленный. Сделаем весьма естественное допущение, что . Тогда для снижения частоты аллеля с 1 до 0.99 (аллель -мутант встречается примерно у одной особи из ста) требуется 1000 поколений. Если бы мутации были единственным процессом, обуславливающим эволюционные изменения в популяции, то эволюция протекала бы невероятно медленно. Это основной урок, который следует извлечь из рассмотренного примера.

Мутации генов часто бывают обратимыми. Как только только аллель становится довольно частым в популяции, следует учитывать следует учитывать мутирование как к нему так и от него. Пусть -темп мутирования аллеля в . Темп обратного мутирования обозначим через . Уравнения эволюции имеют вид:

Состояние равновесия эволюционных уравнений:

, .

Оно устойчиво. Действительно

.

Осталось сослаться на приведенное выше утверждение об устойчивости неподвижных точек одномерных отображений. Впрочем, это слишком сложно. Поступим по другому. Введем новую переменную , или же . В результате подстановки получим:

.

Отсюда следует, что и при . Приближенно . Таким образом, скорость сходимости к состоянию равновесия весьма не велика.

Взаимодействие отбора и мутаций

В природе одбор и мутации протекают одновременно. Имеет смысл изучить их совместное действие. Рассмотрим однолокусную популяцию с аллелями и . Предположим, что мутации происходят в гаметах (в половых клетках родительских организмов). Темп мутирования за одно поколение аллеля в аллель обозначим через . Считаем, что . Пусть и -частоты аллелей и в -ом поколении в момент появления его на свет. Относительные приспособленности генотипов , и обоэначим как , и соответственно. В соответствии с (16) и (17) (уравнение для отбора в менделевской популяции) эволюция для частоты аллеля задается одномерным отображением:

, (24)

где

.

В правой части (24) слагаемое - уменьшение частоты аллеля за счет мутирования в аллель . Очевидно, для частоты аллеля имеем .

Выше было показано, что для всех . Поскольку параметр , правая часть отображения (24) является также монотонно растущей функцией для . На основе этого факта выше было доказано, что все траектории одномерного отображения стремятся к состояниям равновесия.

Рассмотрим некоторые частные случаи. Пусть отбор действует против особей рецессивного гомозиготного генотипа . Будем считать, что относительные приспособленности генотипов и равны между собой и выше относительной приспособленности генотипа . Положим: и . Отображение (24) приобретает вид:

. (25)

Его неподвижные точки суть и . Второе состояние равновесия существует только в случае . Для малой окрестности нуля имеем:

Поскольку на интервале нет состояний равновесия, то для всех . В результате, траектории с начальным условием стремятся к состоянию равновесия , т.е. при . Далее, . Следовательно, для всех . Траектории с начальным условием также стремятся к этому состоянию равновесия, которое оказывается глобально устойчивым. Напомним, что устойчивое состояние равновесия, для которого частоты обоих аллелей ненулевые, называется балансированным полиморфизмом. Выше было показано, что для случая, когда отбор действует против рецессивных гамет и отсутствуют мутации, полиморфизм невозможен (рецессивный аллель вытесняется из популяции). Если рецессивный аллели летальны , то значения равновесных частот суть и . При достаточно типичном темпе мутирования получаем равновесную частоту рецессивного летального аллеля . Это достаточно высокая вероятность возникновения генетического заболевания ( в среднем три особи на тысячу).

Если (отбор против рецессивных гомозигот менее интенсивен нежели мутации), то состояние равновесия отсутствует и отображение (25) имеет единственную неподвижную точку , к которой, естественно, сходятся все траектории. Таким образом, несмотря на лучшую приспособленность обладателей аллеля , засчет мутаций происходит вытеснение этого аллеля.

Рассмотрим теперь случай, когда гомозиготный геннотип имеет самую высокую относительную приспособленность. Пусть , , где . Преобразуем правую часть уравнение эволюции (24). Последовательно получаем :

Далее,

Тем самым, отображение (24) приобретает вид:

.

Одна из неподвижных точек отображения, очевидно, . Две другие определяются из уравнения:

.

Получаем:

, .

Оба корня существуют поскольку .Здесь . Поскольку для , то знак разности определяется знаком квадратного трехчлена . Если , то . Если же , то . Наконец, для . (См. Рисунок.)Тем самым, при начальной точке траектории при . Состояние полиморфизма , устойчиво (полиморфизм балансирован). Соответственно, состояние равновесия неустойчиво. Если начальная точка , то соответствующая траектория стремится к нулю. Однако, нужно заметить, что здесь мы выходим за рамки применимости модели. При больших концентрациях аллеля нужно учитывать мутации от аллелей к аллелям .

Миграции

Миграции, или поток генов возникают, когда особи одной популяции перемещаются в другую и скрещиваются с членами второй популяции. Поток генов не меняют частоты аллелей у вида в целом. Однако, частоты могут меняться в локальных популяциях, если исходные частоты различны у старожилов и пришельцев.

Рассмотрим простейшую модель, описывающую локальную популяцию, в которую с определенной частотой мигрируют особи из окружающей популяции и скрещиваются со старожилами. Предположим, что частота аллеля в окружающей популяции постоянна и равна . Пусть -вероятность обнаружения пришельца среди особей текущего поколения (доля мигрантов). Эта вероятность характеризует интенсивность миграции. Считаем, что доля пришельцев для всех поколений одна и та же.

Обозначим частоту аллеля для локальной популяции через . Тогда частота для следующего поколения суть:

.

Здесь -вероятность того, что гамета -ого поколения является старожилом и обладает аллелем . Соответственно, -вероятность того, что гамета является пришельцем и имеет аллель . Положим: . В результате получим:

,

.

Поскольку , то то с ростом номера поколения и . Частота аллеля в локальной популяции уравниваетсяс его частотой во внешней популяции. Полученную формулу можно использовать для оценки интенсивности потока генов. Рассмотрим пример.

В США потомство от смешанных браков между белыми и темнокожими принято относить к темнокожему населению. Следовательно, смешанные браки можно рассматривать как поток генов из белой в темнокожую популяцию. Частота аллеля , контролирующего резус фактор, у белого населения США составляет . В африканских племенах, от которых происходит современное темнокожее население США, частота этого аллеля . Предки современных темнокожих США были вывезены из Африки примерно лет назад (около поколений), следовательно на данный момент . Частота аллеля у современного темнокожего населения США . Получаем:

Характеристики

Тип файла
Документ
Размер
8,97 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов ответов (шпаргалок)

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7034
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее