31221-1 (630654), страница 3

Файл №630654 31221-1 (Математические модели в естествознании) 3 страница31221-1 (630654) страница 32016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 3)

Особи этого генотипа имеют коричневую окраску и длинные крылья. На данном этапе предсказания теории полностью соответствовали результатам опыта. На втором этапе полученных самок Т.Морган скрещивал с черными самцами, имеющими короткие крылья. Они принадлежали генотипу (aa)(bb). Попытаемся предсказать результат скрещивания:

Таким образом, в результате описанной стратегии срещивания дожны появляться с вероятностью особи двух генотипов (aB)(ab) и (Ab)(ab). Первые имеют черную окраску и длинные крылья, а вторые коричневую окраску и короткие крылья. Результат опыта оказался в противоречии с предсказаниями теории: появились мухи коричневые с длинными крыльями (8.5%) и черные мухи с короткими крыльями (8.5%). На 8.5% по сравнению с теорией уменьшилось число особей каждого из первых двух генотипов.

Была высказана гипотеза (она подтверждена), что в процессе мейоза (образавания половых клеток) гамологичные хромосомы могут обмениваться своими частями. Такой обмен аллелями между гомологичными хромосомами называется кросинговером. Его иллюстрирует рисунок.

Обратим внимание на важное обтоятельство, которое легко понять, глядя на рисунок. Пусть в одном из локусов обеих гомологичных хромосом находится один и тот же аллель. Тогда кроссигговер, даже если он произошел, не меняет локусные пары.

Благодаря кроссинговеру сцепленные гены могут передаваться потомству в сочетаниях, отличных от тех, которые были у родителей. В частности на рисунке родительская особь генотипа (AB)(ab) в результате кроссинговера породила гаметы (Ab) и (aB). Без кроссинговера мейоз привел бы к появлению гамет (AB) и (ab).

Обратимся к уравнениям, описывающим эволюцию в популяции с двумя двухаллельными локусами при условии кроссинговера. Частоты гамет в текущям и последующем поколениях будем обозначать как и . Так, например, -частота гамет, у которых в первом локусе находится аллель A, а во втором - аллель b. Частоты генотипов в текущем поколении связаны с частотами гамет этого же поколения (до мейоза). Приведем примеры. Частота гомозиготного генотипа (AB)(AB) суть , а частота гетерозиготного генотипа (AB)(ab) - соответственно . Эти и все подобные формулы полностью соответствуют случаю одного полиаллельного локуса. Обозначим через m и l вероятности того, что при мейозе соответственно произошел или не произошел кроссинговер. Здесь, естественно, m +l =1. Выпишем уравнения для эволюции частот гамет:

(3)

Дадим комментарии к правой части первой формулы (остальные формулы выписываются аналогично). Первое слагаемое - частота генотипа (AB)(AB). При мейозе каждая особь данного генотипа с единичной вероятность порождает гаметы (AB). Второе слагаемое - половинная частота генотипа (AB)(Ab). В силу сделанного выше замечания, несмотря на кроссиговер, каждая особь этого генотипа с вероятностью при мейозе дает гаметы (AB) и (Ab) (нас в данном случае интересуют гаметы (AB)). Совершенно аналогично, отражает вклад генотипа (AB)(aB) в образование гамет (AB). Четвертое слагаемое выписывается из следующих соображений. При условии, что кроссинговер не произошел (вероятность l ), особь генотипа (AB)(ab) с вероятностью даст гамету (AB). Частота генотипа (AB)(ab) суть . Обратимся к последнему слагаемому. При условии кроссинговера (вероятность m ) особь генотипа (Ab)(aB) (частота ) с вероятностью порождает гамету (AB) (см. рисунок выше). Осталось заметить, что кроссинговер ни в каком другом генотипе не может привести к появлению гаметы (AB).

Преобразуем формулы (3). Выкладки проведем на примере первой формулы. Подставляя , получим

Здесь учтено, что .

Введем обозначение

В результаты преобразований формулы (3) приобретают вид:

(4)

Величина называется мерой неравновесности состояния (если , то частоты гамет постоянны). Рассмотрим эволюцию . В силу (4) имеем:

Итак

. (5)

Проследим за эволюцией частот , , , (нижний индекс - номер поколения). В силу (4) и(5)

(6)

.

Это система так называемых разностных уравнений. Она решается следующим образом. Выписывается матрица правых частей уравнений:

.

Находятся ее собственные значения и . Матрица - диагональная, поэтому , . Собственные векторы (нетривиальные решения систем ) суть

, .

При вычислении использовано равенство: . Система резностных уравнений (6) имеет два линейно независимые решения: и . Общим решением является их линейная комбинация:

.

Константы и определяются из начального условия (при ):

.

Получаем и . В результате получаем решение системы (6):

,

.

Совершенно аналогично исследуется изменение частот гамет (ab), (Ab), (aB):

,

,

.

Из полученных формул следует, что при (с ростом номера поколения) и

, , , .

Тем самым, частоты гамет стремятся к состоянию равновесия, которое не достижимо за конечное число поколений. Частоты генотипов определяются через частоты гамет, а, следовательно, также стабилизируются. В отличии от случая, соответствующего закону Харди -Вайнберга, стабилизация в первом поколении не наступает.

Как уже говорилось, начальное состояние равновесно, т.е. частоты гамет в дальнейшем не меняются, если , т.е.

.

Исследуем условия равновесности. Рассмотрим частоты генов

, ,

, .

Легко видеть, что , . Прямые вычисления показывают:

Таким образом, . Совершенно аналогично: , , .

В равновесных состояниях частоты гамет являются произведениями частот соответствующих генов. Верно и обратное утверждение.

Формальный нейрон Мак-Каллока - Питтса

Модель отражает единственный атрибут биологического нейрона -его способность генерировать импульсы “все, или нечего” в ответ на достаточно сильное воздействие. Нейрон Мак-Каллока - Питтса функционирует в дискретном времени. Он имеет входов -синапсов и единственный выход. Значение выходного сигнала соответствует генерации спайка (состояние возбуждения). В состоянии покоя выходной сигнал . В момент времени выходной сигнал формируется в зависимости от сигналов , поступивших на синапсы в момент времени . Последние также могут принимать значения ноль или единица. Если синаптический сигнал равен нулю, то говорят, что синапс находится в состоянии покоя. Единичное значение соответствует состоянию возбуждения синапса. Сигнал на синапс поступает либо от выхода другого нейроны, либо от сенсора -специального входа для внешних сигналов. Первоначально правила формирования выходного сигнала были введены авторами модели в виде ряда аксиом. Приведем две из них.

  1. Для возбуждения нейрона в момент времени необходимо в момент времени возбудить определенное, фиксированное число синапсов, которое не зависит ни от предыдущей истории, ни от состояния нейрона.

  2. Нейрон имеет особые входы -тормозящие синапсы. Возбуждение любого из них в момент времени исключает возбуждение нейрона в момент времени

Первая аксиома отражает пороговые свойства нейрона, а вторая - подчеркивает особую роль торможения (на сетях “без запретов” нельзя реализовать произвольный алгоритм).

Впоследствии модель изменилась. Синаптические сигналы ( не обязательно бинарные) стали взвешивать и формировать суммарный входной сигнал . Здесь -числа, которые называют синаптическими весами. Синапс называют возбудительным, если , и тормозным, если . Договорились, что в момент времени нейрон находится в возбужденном состоянии , если суммарный входной сигнал в момент времени превысил некоторое пороговое значение , т.е. . Пусть -функция Хевисайта. Она принимает нулевое значение при и единичное при . Тогда можно записать:

. (12)

Описанный объект есть то, что в настоящее время называют формальным нейроном Мак-Каллока - Питтса.

Функция в (12) получила название функции активации. Часто рассматривают нейроны с другими функциями активации. Нулевое значение выходного сигнала означает, что в соответствующий момент времени нейрон не действует на другие нейроны (он как бы искючен из сети). Представляется разумным, что в любой момент времени выходное значение не равно нулю и зависит от величины . В связи с этим, часто берут в качестве функции активации знак числа. Формула для выходного сигнала приобретает вид:

. (13)

Здесь при и при . Отметим, что в данном случае поделить нейроны на возбудительные и тормозные в принципе невозможно (напомним, что для биологических нейронов такая классификация производится).

Еще один подход к выбору функции активации связан с биологическим фактом, что на более сильное воздействие нейрон отвечает пачкой спайков. Число спайков (или частоту их следования) можно принять за характеристику выходного сигнала. В связи с этим рассматривают нейрон, у которого выходной сигнал задается формулой:

. (14)

Здесь -монотонно растущая функция, имеющая предел при . Дополнительно предполагают, что при , либо при (сигмоидная функция). Широко используется так называемая логистическая функция: . Другой вариант: при , например, .

Иногда в качестве функции выбирают линейный трехзвенный сплайн (ломаную, состоящую из трех частей): при , , где и , для . Тогда на восходящем участке функции активации нейрон работает как линейный сумматор входных сигналов.

Рассмотрим нейрон Мак-Каллока - Питтса, выходной сигнал которого задается формулой (12). Вектор , состоящий из входных сигналов (не обязательно бинарных), назовем входным, а вектор -синаптическим. Обычным образом введем скалярное произведение: . Гиперплоскость разбивает пространство на два полупространства и . В первом из них , а во втором . Если входной вектор , то выходной сигнал нейрона , если же , то . Тем самым, нейрон относит каждый из входных векторов к одному из двух классов.

Для того, чтобы нейрон мог осуществлять “правильную” в каком -то смысле классификацию, должны быть соответствующим образом выбраны вектор синаптических весов и пороговое значение . Процедура выбора этих параметров называется обучением нейрона. Различают обучение с “учителем” и “без учителя”.

Задача обучения с учителем ставится следующим образом. Задаются два набора входных векторов и . Они называются эталонными векторами или паттернами, а также образами. Требуется определить вектор синаптических весов и порог так, чтобы выходной сигнал нейрона в ответ на входные векторы был равен единице, а на векторы -нулю. Тем самым, обучение с учителем предполагает, что для каждого эталонного входного вектора заведомо известен ответ нейрона. Эталон и желаемый ответ называются обучающей парой.

Несмотря на многочисленные прикладные достижения обучение с учителем критикуется за свою биологическую неправдоподобность, поскольку совершенно не понятно откуда могут появиться желаемые ответы. При обучении без учителя заранее неизвестно разбиение эталонов на подмножества. До обучения невозможно предсказать в какой класс попадет каждый конкретный эталонный вектор. В процессе обучения выделяются статистические свойства обучающей последовательности и вырабатываются правила классификации. Естественно идея, на которой основаны правила, априорно заложена в процесс обучения. Например, эталонные векторы усредняются по координатам. Если эталонный вектор находится от усредненного “не слишком далеко”, то он относится к первому классу, а иначе -ко второму. Постановка задачи об обучении без учителя выглядит несколько расплывчатой. Однако в ряде случаев она успешно решена.

Различают также внешнее и адаптивное обучение. В первом случае синаптические веса вычисляются неким внешним устройством, а затем импортируются в синапсы. При адаптивном обучении веса подстраиваются в процессе функционирования сети, которой предъявляется обучающая последовательность эталонов. Многие авторы считают механизм адаптации неотъемлемым атрибутом нейронов. Внешнее обучение позволяет понять, во -первых, возможна ли вообще интересующая нас классификация для данной обучающей последовательности. Во -вторых, позволяет, не задумываясь о возможных механизмах адаптации, разумно выбрать синаптические веса для изучения вопроса о функционировании нейронов, объединенных в сеть.

После завершения процесса обучения нейрон осуществляет классификацию векторов эталонной последовательности, т.е. “запоминает” для каждого вектора класс, к которому тот относится. Кроме этого, произвольный входной вектор нейрон относит к определенному классу, т.е. “обобщает” классификацию (принцип сортировки) эталонной последовательности на произвольный образ.

Рассмотрим вопрос о разрешимости задачи обучения с учителем в частном случае, когда второе множество состоит из единственного представителя . Геометрически это означает, что строится гиперплоскость, которая отделяет векторы от нуля, т.е. решается задача об отделимости. Отметим, что для бинарных векторов, координаты которых равны либо нулю, либо единице, задача об отделимости всегда разрешима. В качестве нормального вектора можно взять, например вектор и положить для порогового значения . Нижеследующие построения на используют предположения о бинарности векторов.

Легко понять, что задача об отделимости разрешима в том и только том случае, когда выпуклая оболочка векторов не содержит нуля (отделена от нуля). Напомним, что выпуклой оболочкой векторов называется множество , состоящее из векторов: , где и . Пусть множество отделено от нуля и -его ближайшая к нулю точка, т.е. по всем . Здесь, как обычно, . Положим и выберем произвольно . Вектор -искомый синаптический вектор, а -пороговое значение для нейрона, реагирующего на входные векторы выходным сигналом , а на вектор -сигналом .

Задача о нахождении вектора, на котором реализуется минимальное расстояние от нуля до выпуклой оболочки сама по себе весьма сложна. Если число векторов не превышает размерность пространства и сами они линейно независимы, то отделяющую гиперплоскость можно построить другим способом. Достаточно провести через векторы какую-нибудь не содержащую ноль гиперплоскость, а затем сдвинуть ее по направлению нормали ближе к нулю. В качестве вектора синаптических весов следует взять нормальный к

Характеристики

Тип файла
Документ
Размер
8,97 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов ответов (шпаргалок)

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7034
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее