86344 (612727), страница 2

Файл №612727 86344 (Нестандартные задачи по математике) 2 страница86344 (612727) страница 22016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

0 , если б (a) четно,

g(a) =

1, если б (a) нечетно.

Из сказанного выше вытекает, что эта функция g (четность числа фишек в белых секторах) является инвариан­том. Поскольку п = 2т, для конеч­ной позиции v имеем g(v) = 0. Если т = 2k+ 1, то n/2 нечетно. Значит, для начальной позиции w имеем g(w) =1. Из того, что g(w) отлично от g(v) вытекает, что позиции w и v не эквивалентны. Таким образом, в этом случае

(п = 2 т, т = 2 k + 1) из позиции w нельзя перейти в пози­цию v. Ну, а если т =2 k? Тогда n/2 четно и g(w) = g(v) = 0. В этом случае инвариант g не дает возможности установить эквивалентны позиции w и v или нет.

Дело в том, что если f - инвариант, то из f(a.) = f(p), вообще говоря, ничего не вытекает. Если f(a) отлично от f(p) то позиции а и p не эквивалентны (это следует из (1)). Если же f(a) = f(p), то позиции а и р могут быть как эквивалентными, так и не эквива­лентными: инварианту не запрещается на разных орбитах принимать одинаковые зна­чения. (Например, постоянная функция, т. е. функция, которая на всех элементах из М принимает одно и то же значение, тоже инвариантна.)

Как же быть? Попробуйте для какого-нибудь п вида 4k перейти от позиции w, к позиции v... Почему-то не удается. Попробуем Найти другой , более тонкий инвариант.

Занумеруем секторы (скажем, по часовой стрелке) от 1 до n. Для про­извольной расстановки а.фишек по секторам обозначим через xk (а) количество фишек в k-м секторе при расстановке a.

Рассмотрим теперь такую функцию q:

q (a)= 1 x1 (a) + 2 x2 (a) +3x3(a) +

+ ... + n xn(a). (2)

Является ли функция q инвариантом?

Произвольное допустимое переме­щение (рис. 5) затрагивает 4 слагае­мых суммы (2):

... + i xi (a) + (i + 1) xi+1 (a) + ...+ (j - 1) xj -1(a) + j x j(a)+ (3)

При перемещении , изображенном

... + i [xi(a) - 1] + (i + 1) [xi+1(a) + 1]+

+…+(j1) [xj-1(a) + 1] + j [x j (a) - 1] +…

Легко проверяется, что обе суммы равны. Итак, q - инвариант! Нет,

мы забыли, что n-й сектор граничит с первым. Значит, есть еще 3 возмож­ности. Подсчет, аналогич­ный только что сделанному, показы­вает, что в случае, изображенном на рис. 6, q (a) уменьшится на п, а в случае увеличится на п. В третьем случае q (а), конечно, не изменится. Итак, за одно переме­щение значение функции q может измениться, но только на п. Следовательно, функция r, значение которой на расстановке a равно остатку. от деления числа q (a) на п, есть ин­вариант.

Для позиции v (если все п фишек собраны в 1-м секторе)

x1(v) = x2(v) =…= xl -1(v) = xl+1(v) = …=xn (v) = 0,

xl(v) = n.

Значит, q (v) = l n и r (v) = 0 (каковы бы ни были п и l ). С другой стороны,

x1(w) = x2(w) =…= xn(w) = 1. Значит, q(w) = 1 + 2 + 3 +…+ n = (n(n+1))/2

Если n = 2m, то q(w) = nm + m и r(w) = т =/0 . Сле­довательно, при четном п получаем r(w) =/ r(v). Итак, при четном п по­зиции w и v не эквивалентны.

Если же п = 2т + 1, то q(w) = n(m + 1) и r(w) = 0. Таким образом, при нечетном п мы опять имеем: r (и) — r (v). Получается, что при нечетном п вопрос об эквива­лентности позиций w и v снова остается открытым.

Универсальный инвариант

Назовем инвариант f универсальным, если на неэквивалентных позициях он принимает различные значения: если a ~/ p, то f(a) f(p) . Таким образом, для универсаль­ного инварианта f: если f(a) = f (р), то a ~ р.

Универсальный инвариант на каждой орбите принимает свое значение. По­скольку для универсального инва­рианта a~p f(a) = f(p), универсальный инвариант для любой пары позиций позволяет установить, эквивалентны ояи или нет.

Как проверить, что некоторый ин­вариант f универсален? Общего мето­да не существует. Иногда может по­мочь следующая простая

Теорема. Если а) существуют такие l позиций б1, б2, ..., бl, что каждая позиция a из М эквивалентна одной из них и b) инвариант f при­нимает, по крайней мере, l различ­ных- значений, то f—универсальный инвариант и позиции бi, бj (i=/j) noпарно не эквивалентны.

Из а) вытекает, что существует не более l орбит. Из b) вытекает, что существует не менее l орбит. Следо­вательно, существует ровно l орбит. Снова из b) вытекает теперь, что ин­вариант f принимает ровно l значе­ний и, значит, f универсален. Нако­нец, из а) вытекает, что позиции б1, б2, ..., бl принадлежат разным ор­битам и, таким образом, попарно не эквивалентны.

Задача 1 (окончание). Дока­жем, что инвариант r универсален. Обозначим через бi, такую расстанов­ку фишек: одна фишка — в i-м сек­торе, все остальные — в п-м секторе. Под бn мы будем, разумеется, пони­мать расстановку, при которой все n фишек — в n-м секторе.

Легко сообразить, что любая рас­становка эквивалентна одной из по­зиций б1, б2, ... , бn. В самом деле, пусть a — произвольная расстановка фишек. Попытаемся собрать все п фишек в n-м секторе. Для этого бу­дем передвигать первую фишку, пока не загоним ее в п-ый сектор; од­новременно, в соответствии с прави­лами, мы будем перемещать вторую фишку в противоположную сторону. Затем загоним в n-й сектор вторую фишку, двигая в противоположную сторону третью фишку, и так далее — вплоть до (п— 1)-й фишки. Когда мы загоним п — 1 фишек в n-й сек­тор, п-я фишка будет в каком-то i-м секторе (i = 1, 2, ... , п). Это и озна­чает, что a~ бi.

Посчитаем r(бi). При i не равном п:

x 1(бi) == x2(бi) = …= x i - 1(бi) = x i+1 (бi) =...= xn-1(бi)=0,

xi(бi)=1,

xn(бi)-=n - 1.

Следовательно, q (бi) -= i l + п (п— 1) и r (бi) = i. Кроме того, qn) = nn и rn) = 0. Итак, инвариант r принимает по крайней мере п значений.

По теореме инвариант r универ­сален и позиции б1, б2, ... , бn попарно не эквивалентны.

Поскольку r — универсальный инвариант, a ~ р r(а) = r(р).

В предыдущем параграфе мы посчи­тали, что r(w) = r(v) n-нечетное. Следовательно, w ~ v ,тогда и толь­ко тогда, когда п — нечетное. Зада­ча, наконец, решена полностью.

Задачи

1.19. Докажите, не используя понятия инварианта, что при не­четном п позиции w и v эквиваленты.

1.20. Проверьте, что любая функция от инварианта снова является инвариантом: если f — инвариант и g — произвольная числовая функция, то и функ­ция h : h(a) = g(f(a)) (4) тоже инвариантна.

1.21.Докажите, что любой инвариант можно представить в виде функции от любого универсального инвариан­та: если h — инвариант, a f универсаль­ный инвариант, то существует такая число­вая функция g, что выполняется (4).

1.22.Определим через универсальный инвариант r из задачи 1 два новых инварианта: f(a) = [r(a)]2; g(a) = [r(а) - 2]2. Докажите, что инвариант f универсален, а инвариант g не универсален.

1.23. Пусть f - уни­версальный инвариант. Каким условиям должна удовлетворять числовая функция g, чтобы инвариант h, определенный равенст­вом (4), был универсальным?

Задача 2. Даны 20 карточек. На двух карточках написана цифра 0, на двух — цифра 1, ... , на двух последних — цифра 9. Можно ли расположить эти карточки в ряд так, чтобы карточки с 0 лежали ря­дом, между карточками с 1 лежала ровно одна карточка, ... , между кар­точками с 9 лежало ровно 9 карточек?

Эту задачу можно решить без вся­ких инвариантов. Однако для нас она интересна тем, что у нее есть два принципиально разных решения, ис­пользующих инварианты.

Представим себе 20 ящиков, рас­положенных в ряд. Переформули­руем теперь нашу задачу следующим образом: можно ли расположить карточки по ящикам так, чтобы вы­полнялись два условия:

a) карточки с 0 лежат в соседних ящиках, карточки с 1 — через один ящик, ... , карточки с 9— через де­вять ящиков;

b) в каждом ящике лежит по од­ной карточке?

Очевидно, порознь выполнить каж­дое из условий очень легко. Это и приводит к двум решениям.

Первое решение. Поло­жим в первый ящик 10 карточек:

Одну - с 0, одну - с 1, ... , одну - с 9. Затем вторую карточку с 0 по­ложим во второй ящик, вторую кар­точку с 1 - в третий ящик, .... вто­рую карточку с 9 — в одинадцатый ящик. Условие а) выполняется. Мы хотим попытаться, не нарушая его, так переложить карточки, чтобы ус­ловие b) тоже выполнялось. Разре­шим перекладывать любые две «одно­именные» (с одной и той же цифрой) карточки через одинаковое число ящиков. Нетрудно заметить, что при произвольном разрешенном пере­мещении сдвиг в сумме происходит на четное число ящиков. Это подска­зывает идею взять в качестве инва­рианта остаток от деления на 2 суммы номеров ящиков, в которых лежат карточки.

Задачи

1.24. Закончить наме­ченное решение.

Второе решение. Поло­жим в первый и второй ящики карточ­ки с 0, в третий и четвертый - кар­точки с 1, ... , в девятнадцатый и двадцатый - карточки с 9. На этот раз выполнено условие b). Разрешим менять местами любые две карточки. При таком перемещении расстояние между восемью парами «одноименных» карточек не меняется, между дву­мя - меняется; таким образом, сум­ма всех этих расстояний...

Полная система инвариантов

И ногда вместо универсального ин­варианта проще найти и использовать полную систему инвариантов. Систе­ма инвариантов <f1, f2, f3> на­зывается полной, если равенства,

f1(a) = f1(p),

f2(a) = f2(p), (5)

fk(a) = fk(p).

имеют место одновременно тогда и только тогда, когда позиции a и p эквивалентны.

В чем суть этого определения? Если позиции a и p эквивалентны, то, поскольку f1, f2,…, fk - инварианты, каждое из равенств системы (5) все равно выполняется. «В эту сторону» полнота еще ни при чем. Если бы инварианты f1, f2,…, fk были уни­версальными, то эквивалентность позиций пир вытекала бы из любого равенства систе­мы (5). Нам не дана их универсальность, но зато требуется, чтобы одновремен­ное выполнение равенств системы (5) влекло эквивалентность позиций a и p . Именно в этом суть понятия полноты. Та­ким образом, хотя некоторые из инвариантов f1, f2,…, fk могут на неэквивалентных по­зициях a и p принимать одинаковое значение , значение набора

< f1, f2,…, fk > на них различны.

Полная система инвариантовэто обобщение понятия универсаль­ного инварианта: если f - универ­сальный инвариант, то система <f>, состоящая из одного инварианта, ко­нечно, полна.

Задача 3. В таблице 2х2 записываются целые числа. Разре­шается, во-первых, в любом столбце одновременно: к одному числу приба­вить 2, из другого — вычесть 2 и, во-вторых, в любой строке одновре­менно: к одному числу прибавить 3, из другого — вычесть 3. Какие таб­лицы эквивалентны?

Рассмотрим три функции: для лю­бой таблицы

a= a b

c d

Характеристики

Тип файла
Документ
Размер
713,07 Kb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов курсовой работы

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6513
Авторов
на СтудИзбе
302
Средний доход
с одного платного файла
Обучение Подробнее