85700 (612553)

Файл №612553 85700 (Конечные группы с заданными перестановочными подгруппами)85700 (612553)2016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла

Курсовая работа

"Конечные группы с заданными -перестановочными подгруппами"

Содержание

Перечень условных обозначений

Введение

1. Необходимые определения и обозначения

2. Используемые результаты

3. Определения, примеры и общие свойства -перестановочных подгрупп

4. Конечные группы с заданными -перестановочными подгруппами

Заключение

Список использованных источников

Перечень условных обозначений

– знак строгого включения множеств;

– знак включения множеств;

– принадлежность элемента множеству;

– объединение множеств;

– пересечение множеств;

является подгруппой группы ;

является собственной подгруппой группы ;

является максимальной подгруппой группы ;

является нормальной подгруппой группы ;

является субнормальной подгруппой группы ;

является минимальной нормальной подгруппой группы ;

Скобки применяются для обозначения подгрупп, порождённых некоторым множеством элементов или подгрупп.

– подгруппа, сопряжённая подгрупп посредством элемента ;

– циклическая группа порядка ;

– симметрическая группа степени ;

– ядро подгруппы в группе , т.е. пересечение всех подгрупп, сопряжённых с в ;

– подгруппа, порожденная всеми подгруппами, сопряженными с подгруппой из элементами из , то есть ;

– централизатор множества T в группе G;

– центр группы G;

– нормализатор подгруппы в группе ;

– наибольшая нормальная подгруппа нечетного порядка группы ;

– наибольшая нормальная –подгруппа группы ;

–холловская подгруппа группы ;

– силовская –подгруппа группы ;

– дополнение к силовской –подгруппе в группе , т.е. –холловская подгруппа группы ;

– группа G изоморфна группе ;

Пусть – группа, и , тогда:

– правый смежный класс,

– левый смежный класс;

– правая трансверсаль подгруппы

в группе ;

– левая трансверсаль подгруппы

в группе ;

– индекс подгруппы в группе ;

– порядок группы G;

Пусть и – подгруппы группы и , тогда:

– двойной смежный класс группы по подгруппам

и ;

– факторгруппа группы по подгруппе ;

– прямое произведение подгрупп A и B;

– цоколь группы ;

– коммутатор элементов и ;

– коммутант группы G;

– множество всех простых чисел;

– дополнение к во множестве , где – некоторое множество простых чисел;

-длина группы .

Введение

Напомним, что подгруппа группы перестановочна с подгруппой , если . Если перестановочна со всеми подгруппами группы , то она называется перестановочной [6] или квазинормальной в [7].

Так как для двух перестановочных подгрупп и произведение также является подгруппой в , то понятие перестановочных подгрупп является одним из наиболее важных обобщений понятия нормальных подгрупп.

Перестановочные подгруппы имеют много интересных свойств. Как известно, например, что каждая перестановочная подгруппа является восходящей [8] и, если она является перестановочной подгруппой в некоторой конечной порождённой группе , то субнормальна в [8].

Но фактически эти два результата были получены как обобщения следующего наблюдения: каждая перестановочная подгруппа конечной группы является субнормальной [7].

Разрабатывая этот результат Ito и Szep доказали, что для каждой перестановочной подгруппы конечной группы , – нильпотентна [9].

Немного позже было доказано, что при таких условиях, [18].

При некоторых естественных условиях мы встречаемся с ситуацией, когда некоторые подгруппы и группы неперестановочны, но существует подгруппа такая, что для некоторого .

Основываясь на этом наблюдении мы дадим следующие определения.

Определение 1 Пусть , – подгруппы группы и . Тогда мы говорим, что:

(1) является -перестановочной с , если для некоторого имеем .

(2) является наследственно -перестановочной с , если для некоторого .

Заметим, что – перестановочные подгруппы также являются перестановочными подгруппами. Во втором приведённом случае мы имеем дело с -перестановочными подгруппами, которые были исследованы и использованы в [].

Определение 2 Подгруппа группы называется (наследственно) -перестановочной, если она (наследственно) перестановочна со всеми подгруппами группы .

Целью данной работы является изложение некоторых известных разделов теории перестановочных подгрупп, изучение и применение некоторых свойств -перестановочных подгрупп.

1. Необходимые определения и обозначения

Бинарной алгебраической операцией на множестве называют отображение декартова квадрата во множество . Если – бинарная операция на , то каждой упорядоченной паре элементов из соответствует однозначно определенный элемент . Бинарную операцию на обозначают одним из символов: и т.д. Если, например, вместо условимся писать , то вместо пишем .

Говорят, что на множестве X определена бинарная операция (умножение), если для всех .

Если для всех , то операция называется ассоциативной.

Если для всех , то операция называется коммутативной.

Элемент называется единичным, если для всех .

Обратным к элементу называется такой элемент , что .

Полугруппой называется непустое множество с бинарной алгебраической операцией (умножение), удовлетворяющей следующим требованиям:

(1) операция определена на , т.е. для всех и ;

(2) операция ассоциативна, т.е. для любых .

Группой называется непустое множество с бинарной алгебраической операцией (умножением), удовлетворяющей следующим требованиям:

(1) операция определена на , т.е. для всех и ;

(2) операция ассоциативна, т.е. для любых ;

(3) в существует единичный элемент, т.е. такой элемент , что для всех ;

(4) каждый элемент обладает обратным, т.е. для любого существует такой элемент , что .

Группу с коммутативной операцией называют коммутативной или абелевой.

Если G – конечное множество, являющееся группой, то G называют конечной группой, а число элементов в порядком группы .

Также группой называется непустое множество с бинарной алгебраической операцией (умножением), удовлетворяющей следующим требованиям:

(1) операция определена на ;

(2) операция ассоциативна;

(3) уравнения , имеют решения для любых элементов .

Подмножество группы называется подгруппой, если – группа относительно той же операции, которая определена на группе . Для подгруппы используется следующее обозначение: . Запись читается так: – подгруппа группы .

Также можно дать следующее определение подгруппы конечной группы. Непустое подмножество конечной группы называется подгруппой, если для всех и

Каждая группа обладает единичной подгруппой . Сама группа также считается подгруппой в . Эти подгруппы называют тривиальными подгруппами. Нетривиальная подгруппа группы это такая подгруппа из , которая отлична от и отлична от единичной подгруппы .

Собственной называется подгруппа, отличная от группы.

Пусть – подмножество группы и . Через

обозначим подмножество всех элементов группы вида , где пробегает все элементы множества . Подмножество называется подмножеством, сопряженным подмножеству посредством элемента .

Подгруппа называется подгруппой, сопряженной подгруппе посредством элемента .

Пусть – непустое подмножество группы . Совокупность всех элементов группы , перестановочных с каждым элементом множества , называется централизатором множества в группе и обозначается через . Таким образом,

Центром группы называется совокупность всех элементов группы , перестановочных с каждым элементом группы . Центр группы обозначается через . Ясно, что , т.е. центр группы совпадает с централизатором подмножества в группе . Кроме того,

Зафиксируем элемент в группе . Пересечение всех подгрупп группы , содержащих элемент , назовем циклической подгруппой, порожденной элементом , и обозначим через . Таким образом,

Для элемента имеются следующие две возможности.

Все степени элемента различны, т.е. для целых . В этом случае говорят, что элемент имеет бесконечный порядок.

Имеются совпадения при . Если, например, , то и , т.е. существуют натуральные степени элемента , равные единичному элементу. Наименьшее натуральное число , при котором называют порядком элемента и пишут

Если группа совпадает с одной из своих циклических подгрупп, то группу называют циклической группой. В этом случае в группе имеется элемент такой, что , все элементы в группе являются целыми степенями элемента :

Если элемент имеет бесконечный порядок, то все эти элементы в группе попарно различны и бесконечная циклическая группа.

Если элемент имеет конечный порядок , то , т.е. циклическая группа , порожденная элементом порядка , состоит из элементов. В этом случае конечная циклическая группа порядка .

Две группы и называются изоморфными, если существует биекция такая, что для всех . Факт изоморфизма записывают так: .

Пусть – группа, и . Правым смежным классом группы по подгруппе называется множество

всех элементов группы вида , где пробегает все элементы подгруппы .

Аналогично определяется левый смежный класс

Характеристики

Тип файла
Документ
Размер
18,42 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Тип файла документ

Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.

Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.

Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.

Список файлов курсовой работы

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7001
Авторов
на СтудИзбе
262
Средний доход
с одного платного файла
Обучение Подробнее
{user_main_secret_data}