85700 (612553), страница 5

Файл №612553 85700 (Конечные группы с заданными перестановочными подгруппами) 5 страница85700 (612553) страница 52016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 5)

(4) , где – нильпотентная максимальная подгруппа группы и является максимальной нормальной подгруппой в , где .

В виду (1) и Леммы 2.15 имеет уникальную минимальную нормальную подгруппу и . Теперь используя Лемму 2.14 мы получаем (4).

(5) Конечное противоречие.

По предположению абнормальна в , таким образом по Лемме 2.16 – картерова подгруппа в . Ясно, что также является картеровой подгруппой в . Следовательно, по Лемме 2.14 получаем , для некоторого . Теперь предположим, что – силовская -подгруппа в , где – простой делитель , отличный от . Тогда , и по (2), , что противоречит Лемме 2.18.

Теорема доказана.

Заключение

Таким образом, в данной работе мы изучили конечные группы с заданными -перестановочными подгруппами, в частности доказали следующие три новых признака p-разрешимости конечных групп

Теорема , силовская -подгруппа , -перестановочна с каждой силовской подгруппой из , порядок которой взаимно прост с . Тогда -разрешима.

Теорема Пусть – силовская -подгруппа , и каждая максимальная подгруппа из перестановочна с каждой силовской подгруппой из , порядок которой взаимно прост с . Тогда -разрешима.

Теорема Пусть в группе G P – силовская р-подгруппа, и . Если для некоторого фиксированного натурального числа каждая подгруппа порядка перестановочна с каждой силовской подгруппой из G, порядок которой взаимно прост с р, то G p-разрешима с .

Список использованных источников

1[] Скиба А.Н. «Решётки и универсальные алгебры». Гомель 2003 год.

2[] Каргаполов М.И., Мерзляков Ю.И. «Основы теории групп». М.:наука: 1972 год.

3[] Холл Ф. «Теория групп». М.: ИЛ, 1962 год.

4[] Селькин М.В. «Максимальные подгруппы в теории классов конечных групп». Мн.: Беларуская навука. 1997 год.

5[] Монахов В.С. «Введение в теорию групп и их классов». Гомель 2003 год.

6[] K. Doerk and T. Hawkes, «Finite soluble grousp», Walter de gruyter, Berlin/New York, 1992.

7[] O. Ore, Contributions in the theory of groups of finite order. Duke Math. J. 1939.

8[] S.E. Stonehewer, Permutable subgroups in Infinite Groups, Math. Z., 1972.

9[] N. Ito and J. Szйp, Uber die Quasinormalteiler von endlichen Gruppen. Act. Sci. Math. 1962.

10[] J. Buckley, Finite groups whose minimal subgroups are normal, Math. Z. 116, 1970, 15–17.

11[] P. Hanck, A. Martinez-Pastor and M.D. Perez-Ramos, Fitting classes and products of totally permutable groups. J. Algebra 252, 2002, 114–126.

12[] O.H. Kegel, Producte nilpotenter Gruppen, Arch. Math. (Basel), 12, 1961, 90–93.

13[] O.H. Kegel. Sylow-Gruppen and Subnormalteiler endlicher Gruppen, Math. Z., 87, 1962, 205–221.

14[] Rudolf Maier, A completeness property of certain formations, Bull. London Math. Soc., 24, 1992, 540–544.

15[] Gou Wenbin, Shum K.P., Skiba A.N. On Primitive Subgroups. – 2003. – (Препринт/ ГГУ им. Ф. Скорины; №51)

16[] Боровиков М.Т. О р-разрешимости конечной группы. Мн.:Наука и техника, 1986.

Характеристики

Тип файла
Документ
Размер
18,42 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов курсовой работы

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7005
Авторов
на СтудИзбе
261
Средний доход
с одного платного файла
Обучение Подробнее
{user_main_secret_data}