47950 (597370), страница 4

Файл №597370 47950 (Основы анализа и синтеза комбинационных логических устройств) 4 страница47950 (597370) страница 42016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 4)

.

В рассмотренном примере двум клеткам первого объединения соответствуют минтермы, имеющие две общие переменные

.

Поэтому дизъюнкция этих минтермов равна этим двум общим переменным: .

Четырем клеткам второго объединения соответствуют минтермы имеющие одну общую переменную :

Дизъюнкция этих минтермов также равна общей переменной .

Чем больше клеток входит в объединение, тем меньше переменных входит в соответствующий конъюнктивный член, т.е. проще МДНФ.

Процесс получения алгебраического выражения логической функции, представленной на карте Карно, сводится к считыванию объединений клеток. При этом каждое объединение клеток считывают в виде конъюнктивного члена, в который входят переменные или их инверсии, общие для всех минтермов, соответствующих этим клеткам.

Необъединенные клетки считывают в виде записанных в них минтермов.

Число конъюнктивных членов в МДНФ равно сумме объединений и необъединенных клеток.

Пример 1.7. Логическая функция задана табл.1.8


Таблица 1.8

Таблица истинности

x1

x2

f

0

0

1

0

1

1

1

0

0

1

1

1

Найти СДНФ этой функции, и провести минимизацию с помощью карты Карно.

Решение: 1. Находят минтермы:

x1

x2

mi

f

0

0

1

0

1

1

1

0

0

1

1

1

2. Логическая функция в форме СДНФ:

.

3. Карта Карно логической функции (рис.1.6)

x1

x2

0

1

0

1

1

1

1

Рис.1.6 Карта Карно логической функции

4. Получают МДНФ функции

.

Пример 1.8. Минимизировать с помощью карты Карно (рис.1.7) логическую функцию, заданную в форме СДНФ:

x1x2

x3

00

01

11

10

0

1

1

1

1

1

Рис.1.7 Карта Карно

Решение: МДНФ функции:

.

Пример 1.9. Минимизировать с помощью карты Карно (рис.1.8) заданную в форме СДНФ логическую функцию:

.

x1x2

x3

00

01

11

10

0

1

1

1

1

1

1

1

Рис.1.8 Карта Карно:

Решение: МДНФ функции:


1.7 Аналитические методы минимизации логических функций

Эти методы базируются на применении основных законов булевой алгебры.

Алгоритм получения МДНФ логической функции:

  1. Логическая функция представляется в СДНФ. Причем, если она задана таблицей истинности, то представляют путем записи “по единицам”; если она задана алгебраической произвольной дизъюнктивной форме - путем применения операций развертывания, формул Де Моргана и др.

  2. В полученном СДНФ проводят все возможные операции неполного склеивания и затем поглощения. В результате получают сокращенную дизъюнктивную нормальную форму, т.е. дизъюнкцию самых коротких из всех возможных элементарных произведений (простые импликанты), входящие в данную логическую функцию.

  3. Находят минимальные дизъюнктивные нормальные формы по импликантной матрице.

Импликантная матрица - это таблица, на вертикальные и горизонтальные входы которой записывают соответственно члены СДНФ и простые импликанты заданной логической функции.

Клетки импликантной матрицы, образованные пересечением строк с импликантами и столбцов с поглощательными ими членами СДНФ, отмечают крестиками [5].

МДНФ находят как дизъюнкцию минимального числа импликант, которые совместно накрывают крестиками все колонки импликантной матрицы.

Пример 1.10. Минимизировать логическую функцию:

Решение: 1. Функция задана в алгебраической форме, применяя операции развертывания

получают СДНФ, содержащую шесть членов:

2. Операции склеивания проводят в следующем порядке:

  1. выполняются все возможные склеивания 1-ого члена с остальными;

  2. выполняются все возможные склеивания 2-ого члена с остальными, кроме 1-ого;

  3. выполняются все возможные склеивания 3-ого члена с остальными, кроме 1-ого и второго и т.д.

Склеиваться могут только те члены, у которых число переменных с отрицаниями отличается на единицу. Результаты склеивания и поглощения:

Звездочками отмечают те члены СДНФ, которые поглощаются произведениями, образовавшимися после склеивания.

В рассматриваемом примере поглощаются все шесть исходных членов, поэтому СДНФ заданной функции имеет вид:

К этому выражению операции склеивания и поглощения применить нельзя, и, следовательно, оно является сокращенной дизъюнктивной нормальной формой логической функции, а его члены - простыми импликантами.

3. Строят для заданной функции импликантную матрицу (табл.1.9)

Таблица 1.9

Импликантная матрица

Простые

Члены СДНФ

импликанты

(минтермы)

1

2

3

4

5

6

X

X

X

X

X

X

X

X

X

X

Для получения МДНФ необходимо найти минимальное число импликант, которые совместно накрывают крестиками все столбцы импликантной матрицы:

Сложность логической функции определяется числом переменных входящих в ее выражение: в заданной функции 14, в минимальной - 9.

Первый алгоритм получения МКНФ логической функции:

  1. Логическую функцию представляют в СКНФ. Причем, если она задана таблицей истинности, то ее записывают “ по нулям”; если она задана алгебраически в произвольной конъюктивной форме, то для записи в СКНФ выполняют все возможные операции развертывания.

  2. В полученной СКНФ выполняют все возможные операции неполного склеивания и затем поглощения. В результате получают сокращенную конъюнктивную нормальную форму, члены которой являются простыми макстермами.

  3. МКНФ находят по макстермной матрице.

Пример 1.11. Логическая функция задана табл.1.10


Таблица 1.10

Таблица истинности

x1

x2

x3

f

0

0

0

1

0

0

1

0

0

1

0

1

0

1

1

0

1

0

0

0

1

0

1

0

1

1

0

1

1

1

1

1

Найти МКНФ этой функции.

Решение:

1. Выписывают заданную функцию в СКНФ “по нулям” таблицы истинности:

2. Проводят операции склеивания и поглощения:

В данном примере поглощаются все четыре члена исходного выражения и, следовательно, СКНФ

3. Макстермная матрица задана табл.1.11

Таблица 1.11

Макстермная матрица

Простые

импликанты

Члены СКНФ

(макстермы)

1

2

3

4

X

X

X

X

X

X

4. МКНФ логической функции:

.

Второй алгоритм получения МКНФ логической функции:

  1. Логическая функция представляется в СДНФ заданной функцией, взятой с отрицанием.

Если функция задана таблицей истинности, то выписывают ряд произведений всех аргументов и соединяют их знаками дизъюнкции; количество произведений должно равняться числу наборов, на которых заданная функция обращается в нуль; под каждым произведением записывают набор аргументов, на которых функция равна нулю, и над аргументами, равными нулю, ставят знаки отрицания. Если функция заданна алгебраически в произвольной форме, то сначала находят ее СДНФ, а затем записывают дизъюнкцию всех произведений аргументов, которые не вошли в СДНФ.Находят МДНФ по рассмотренному выше алгоритму. От полученной МДНФ берут отрицание и, после преобразований по формулам Де Моргана, получают МКНФ.

Пример 1.12. Найти МКНФ, функции заданной табл.1.12


Таблица 1.12

Таблица истинности

x1

x2

x3

f

0

0

0

1

0

0

1

1

0

1

0

0

0

1

1

0

1

0

0

0

1

0

1

1

1

1

0

0

1

1

1

1

Решение: 1. СДНФ, взятая с отрицанием:

Характеристики

Тип файла
Документ
Размер
11,25 Mb
Тип материала
Учебное заведение
Неизвестно

Список файлов книги

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6310
Авторов
на СтудИзбе
313
Средний доход
с одного платного файла
Обучение Подробнее