47950 (597370), страница 5

Файл №597370 47950 (Основы анализа и синтеза комбинационных логических устройств) 5 страница47950 (597370) страница 52016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 5)

2. Результаты склеивания и поглощения:

3. МДНФ, взятая с отрицанием:

4. Взяв от обеих частей последнего равенства отрицание и применив формулу Де Моргана, получают МКНФ логической функции:

.

1.8 Логический базис

Любую логическую функцию можно представить в виде СДНФ или СКНФ, т.е. с помощью соответствующей комбинации простейших логических функций И, ИЛИ, НЕ. Такой набор простейших логических функций называют функционально полным или логическим базисом.

Логический базис называют минимальным, если удаление хотя бы одной из входящих в него функций превращает его в функционально неполный.

Логический базис И, ИЛИ, НЕ не является минмальным, так как с помощью закона дуальности (Де Моргана) можно исключить из логических выражений либо функцию И, либо функцию ИЛИ:

.

В результате получим минимальные базисы: И, НЕ и ИЛИ, НЕ.


2 Логические элементы, образующие логический базис

2.1 Конъюнктур (элемент И)

Конъюнктур - реализует операцию “логическое умножение”. Схема имеет два или больше входов и один выход. На выходе сигнал “1” появляется тогда и только тогда, когда на все входы одновременно воздействуют входные сигналы “1” рис. 2.1.


Рис.2.1 Условное изображение конъюнктура на функциональных схемах: x1 ,x2,... , xn - входы (минимальное число входов -2); y- выход.

Логика работы конъюнктура на три входа представлена табл.2.1

Таблица 2.1

Таблица состояний конъюнктура

x1

x2

x3

f

0

0

0

0

0

0

1

0

0

1

0

0

0

1

1

0

1

0

0

0

1

0

1

0

1

1

0

0

1

1

1

1

Логическое уравнение работы конъюнктура:

.

Знаки (), () соответствуют конъюнкции и читаются как союз И.

Если на вход конъюнктура поступают сигналы в разные моменты времени и разной длительности, то сигнал на входе определяется как результат пересечения входных сигналов (рис. 2.2)


Рис 2.2 Временная диаграмма работы конъюнктура

Таким образом , где i=1,2,... ,n

С точки зрения физической реализации конъюнктуры могут быть выполнены на различных “вентильных” компонентах (диодах, транзисторах и др.)

Функцию И реализуют, например, соединенные последовательно замыкающие контакты нескольких реле. Цепь в этом случае будет замкнута только тогда, когда сработают все реле.

2.2 Дизъюнктор (элемент ИЛИ)

Дизъюнктор - реализует операцию "логическое сложение". Схема имеет два или больше входов. На выходе сигнал "1" появляется тогда, когда хотя бы на один вход воздействует сигнал "1"(рис.2.3).


Рис. 2.3 Условное изображение дизъюнктора на функциональных схемах: х1, х2,...хn - входы (минимальное число входов - два); у - выход.

Логика работы дизъюнктора на три входа представлена табл.2.2

Таблица 2.2

Таблица состояний дизъюнктора

х1

х2

х3

у

0

0

0

0

0

0

1

1

0

1

0

1

0

1

1

1

1

0

0

1

1

0

1

0

1

1

0

1

1

1

1

1

Логическое уравнение работы дизъюнктора: у=х123 или . Знаки (+), ( ) соответствуют дизъюнкции и читаются как союз ИЛИ. Если на вход дизъюнктора поступают сигналы в разные моменты времени и разной длительности, то сигнал на выходе определяется как результат объединения входных сигналов (рис.2.4).


Рис. 2.4 Временная диаграмма работы дизъюнктора.

Таким образом, .

С точки зрения физической реализации дизъюнкторы могут быть выполнены на различных "вентильных" компонентах (диодах, транзисторах и др.). Функцию ИЛИ реализуют, например, содиненные параллельно замыкающие контакты нескольких реле. Цепь в этом случае будет замкнута, если сработает хотя бы одно реле.

    1. Инвертор (элемент НЕ)

Инвертор - реализует операцию "логическое отрицание". Схема имеет один вход и один выход. На выходе сигнал "1" имеет место в случае, если на входе будет сигнал "0"(рис.2.5).

Рис. 2.5 Условные изображения инвертора на функциональных схемах: Х-вход, У-выход

Логика работы инвертора представлена табл.2.3


Таблица 2.3

Таблица состояний инвертора

Х

У

0

1

1

0

Логическое уравнение работы инвертора:

Уравнение читается: У равняется не Х.

С точки зрения физической реализации наибольшее распространение получили инверторы на транзисторах.

Функцию НЕ реализует, например, размыкающий контакт реле. При срабатывании реле цепь, в которую входит этот контакт, будет размыкаться.


2.4 Элемент Шеффера (элемент И-НЕ)

Элемент Шеффера - реализует операцию логическое умножение с отрицанием. На выходе сигнал "1" имеет место всегда, кроме случая, когда сигналы "1" на всех входах совпадают (рис. 2.6).


Рис. 2.6 Условное изображение элемента Шеффера на функциональных схемах: х1, х2, хn - входы (минимальное число входов - два); y - выход.

Логика работы элемента Шеффера на три входа представлена табл.2.4


Таблица 2.4

Таблица состояний элемента Шеффера

х1

х2

х3

у

0

0

0

1

0

0

1

1

0

1

0

1

1

0

0

1

0

1

1

1

1

0

1

1

1

1

0

1

1

1

1

0

Логическое уравнение работы элемента Шеффера:

Уравнение позволяет представить логическую схему элемента Шеффера в виде(рис.2.7).


Рис. 2.7 Представление логической схемы элемента Шеффера в виде последовательного соединения конъюнктора и инвертора.


2.5 Элемент Пирса (элемент ИЛИ-НЕ)

Элемент Пирса - реализует операцию логическое сложение с отрицанием. На выходе сигнал "1" имеет место только в случае, если на всех входах одновременно будет сигнал "0" (рис.2.8).


Рис. 2.8 Условное изображение элемента Пирса на функциональных схемах: х1, х2, хn - входы (минимальное число входов - два); y - выход.

Логика работы элемента Пирса на три входа представлена табл.2.5

Таблица 2.5

Таблица состояний элемента Пирса

х1

х2

х3

у

0

0

0

1

0

0

1

0

0

1

0

0

1

0

0

0

0

1

1

0

1

0

1

0

1

1

0

0

1

1

1

0

Логическое уравнение работы элемента Пирса:

Поэтому логическую схему элемента Пирса можно представить рис.2.8

Рис. 2.8 Представление логической схемы элемента Пирса в виде последовательного соединения дизъюнктора и инвертора.

2.6 Функциональная полнота элементов Шеффера (И-НЕ) и Пирса (ИЛИ-НЕ)

Для того чтобы доказать функциональную полноту элемента Шеффера, покажем возможность построения на его основе логических цепей, реализующих простейшие функции НЕ, И, ИЛИ (рис.2.9).

а) Функция НЕ:



б) Функция И:



в) Функция ИЛИ:


Рис.2.9 Способы построения на основе элемента Шеффера простейших функций

То же сделаем для элемента Пирса (рис.2.10).

а) Функция НЕ:

б) Функция И:

Характеристики

Тип файла
Документ
Размер
11,25 Mb
Тип материала
Учебное заведение
Неизвестно

Список файлов книги

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6310
Авторов
на СтудИзбе
312
Средний доход
с одного платного файла
Обучение Подробнее