86145 (589940), страница 4

Файл №589940 86145 (Применение тригонометрической подстановки для решения алгебраических задач) 4 страница86145 (589940) страница 42016-07-29СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 4)

Пример 1. Найти наибольшее и наименьшее значение выражения в области

[25].

Решение с помощью тригонометрической подстановки

Уравнение преобразуем так, чтобы в левой части получилась сумма квадратов: . Следовательно, каждое из выражений и по модулю не превосходит единицы и их можно рассматривать как синус и косинус некоторого угла. Положим . Выразим через одну величину :

.

Ответ: наибольшее значение равно , наименьшее значение равно .

Алгебраическое решение

Уравнение преобразуем так, чтобы в левой части получилась сумма квадратов: . Нам нужно найти наибольшее и наименьшее значения выражения в точках окружности , то есть окружности с центром в точке и радиусом . Пусть в точке с координатами выражение принимает наибольшее значение, тогда справедлива система

.

Так как ищем наибольшее значение выражения , то выбираем

.

.

Тогда наибольшее значение выражения равно

.

Аналогично находим, что наименьшее значение выражения равно

.

Ответ: наибольшее значение равно , наименьшее значение равно .

Пример 2. Найти наименьшее и наибольшее значения выражения , если [24].

Решение с помощью тригонометрической подстановки

Уравнение преобразуем так, чтобы в левой части получилась сумма квадратов:

.

Имеем, что сумма квадратов и равна единице, поэтому каждое из этих выражений по модулю не превосходит единицы и их можно рассматривать как синус и косинус некоторого угла. Вот почему можно положить . Выразим сумму квадратов через одну величину :

.

Ответ: наименьшее значение , наибольшее значение .

Алгебраическое решение

Иногда уравнения с параметрами возникают при решении задач, казалось бы, не имеющих к ним никакого отношения. Если требуется найти, например, наименьшее значение функции , ответ можно получить, если найти множество всех ее значений. Хотя это и более общая задача, но ее решение оказывается более простым. Причем число будет значением функции тогда и только тогда, когда уравнение имеет хотя бы один корень. Поэтому требуется найти все такие значения параметра и среди них выбрать наименьшее число. Это число и будет наименьшим значением функции [37]. Реализуем сказанное для решения данной задачи другим способом.

Перейдем к системе

,

то есть выясним, при каких значениях параметра система имеет решения. Умножим второе уравнение на и вычтем полученное уравнение из первого.

.

Получили однородное уравнение относительно переменных и . Проверкой устанавливается, что при система решений не имеет, поэтому уравнение можно разделить на

.

Чтобы это уравнение имело решения необходимо и достаточно, чтобы его дискриминант был неотрицателен.

.

Итак, данная система равносильна системе

.

Покажем, что при система имеет решения. Пусть - корень первого уравнения, тогда подставим во второе уравнение

.

Обратим внимание на то, что в промежутке только положительные числа, значит, полученное уравнение имеет решения. Соответственно, имеет решение и вся система. Промежуток и есть множество значений, принимаемых выражением при условии, что

.

В данном случае решение с помощью тригонометрической подстановки проще как в техническом, так и в идейном смысле. Не зная заранее идеи второго способа, трудно догадаться свести задачу о нахождении наибольшего и наименьшего значений выражения к решению системы с параметром.

Пример 3. Найти наибольшее и наименьшее значение выражения , если [16].

Как в предыдущем примере, в этом случае самый удобный подход – тригонометрическая подстановка. Решение системы, состоящей из двух неравенств и одного уравнения с параметром, довольно сложно.

Решение с помощью тригонометрической подстановки

Положим . Геометрический смысл такой замены: для каждой точки кольца определяются расстояние до начала координат и угол наклона вектора к положительному направлению оси абсцисс. Тогда неравенство будет выполнено при . Произведем замену в данном выражении

= .

Так как множество значений выражения – это отрезок , то множество значений выражения – отрезок .

Ответ: наименьшее значение , наибольшее значение 3.

Пример 4. Среди всех решений системы

[42].

Найдите такие, при которых выражение принимает наибольшее значение.

Перепишем систему в виде

Так как сумма квадратов чисел и рана единице, то каждое из них по абсолютной величине не превосходит единицы, поэтому их можно рассматривать как синус и косинус некоторого аргумента. Вот почему будет законна подстановка . Аналогично обосновывается введение замены . Тогда неравенство системы перепишется в виде

.

Запишем выражение в виде

.

Наибольшее значение выражения достигается тогда и только тогда, когда

Найдем

.

.

.

.

Ответ: .

Алгебраическое решение

Перепишем исходную систему в виде

.

Сложим равенства полученной системы

.

Сравним левые и правые части получившегося равенства и неравенства системы, получим

.

Рассмотрим квадрат выражения

.

Наибольшее значение выражения , а значит, наибольшее значение выражения имеет место тогда и только тогда, когда , то есть . Можно записать

.

Подставим полученное выражение в первое уравнение исходной системы и найдем

.

Так как необходимо найти наибольшее значение выражения и и имеют одинаковый знак, то выбираем

.

.

Так как , то .

.

Ответ: .

Здесь решение с помощью тригонометрической подстановки компактнее, быстрее приводит к результату. Единственный и важный момент, на который следует указать учащимся, является необходимость обоснования введения тригонометрической подстановки. Тот факт, что, например, и по модулю не превосходят единицы, можно проиллюстрировать графически. Уравнение задает окружность с центром в начале координат и радиуса 2.

Из рисунка видно, что и принимают значения из отрезка , тогда и изменяются на отрезке .


0


§5. Решение задач с параметрами

Решение задач с параметрами – один из труднейших разделов школьного курса математики. Здесь, кроме использования определенных алгоритмов решения уравнений или неравенств, приходится думать об удачной классификации, следить за тем, чтобы не пропустить много тонкостей. Уравнения и неравенства с параметрами – это тема, на которой проверяется подлинное понимание учеником материала. Поэтому, например, на вступительных экзаменах в вузы с повышенными требованиями по математике уравнения и неравенства с параметрами часто включают в варианты письменных работ.

Пример 1. Решите и исследуйте уравнение

[45].

Решение с помощью тригонометрической подстановки

Так как , то , поэтому положим . Уравнение примет вид

.

Если , то данное уравнение корней не имеет.

Пусть . Так как , то . При этих значениях имеем

.

То есть для того чтобы уравнение имело корни необходимо и достаточно, чтобы

.

Значит, если , то данное уравнение корней не имеет.

Пусть , то есть . Отсюда . Тогда данное уравнение имеет один корень

.

Если , то исходное уравнение имеет два корня

.

, .

Ответ: Если или , то данное уравнение корней не имеет.

Если , то уравнение имеет единственный корень .

Если , то уравнение имеет два корня .

Алгебраическое решение

.

Пусть . Выясним, при каких значениях выполняется неравенство , то есть решим неравенство

.

Пусть , тогда рассмотрим неравенство

.

Ответ: Если или , то данное уравнение корней не имеет.

Если , то уравнение имеет единственный корень .

Если , то уравнение имеет два корня .

В данном случае оба решения равноценны, можно решать любым способом. Зато уже в следующем примере решение с помощью тригонометрической подстановки проще.

Пример 2. При каких а неравенство

имеет решение [13].

Неравенство имеет решение при а большем наименьшего значения выражения .

Решение с помощью тригонометрической подстановки

Положим , тогда

, где .

Оценим выражение

.

Наименьшее значение выражения равно . Значит, при неравенство имеет решение.

Ответ: при неравенство имеет решение.

Алгебраическое решение

Если , то неравенство примет вид

.

Значит, при неравенство имеет решение.

Поделим числитель и знаменатель на , получим

.

Введем замену , тогда

.

Найдем наименьшее значение выражения .

Характеристики

Тип файла
Документ
Размер
7,89 Mb
Предмет
Учебное заведение
Неизвестно

Список файлов ВКР

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6358
Авторов
на СтудИзбе
311
Средний доход
с одного платного файла
Обучение Подробнее