86145 (589940), страница 3

Файл №589940 86145 (Применение тригонометрической подстановки для решения алгебраических задач) 3 страница86145 (589940) страница 32016-07-29СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 3)

1.2 Рациональные уравнения

Тригонометрическая подстановка применяется при решении рациональных уравнений, когда уравнение не имеет рациональных корней или найденные рациональные решения не исчерпывают всего множества решений уравнения.

При решении иррациональных уравнений возможность введения тригонометрической подстановки была видна по структуре уравнения. В нескольких следующих задачах применение метода тригонометрической подстановки не так очевидно. Вот почему прежде чем ввести подстановку, нужно доказать законность такого введения.

Пример 1. Сколько корней имеет уравнение

[37].

Решение этой задачи любым методом начинается одинаково. Докажем, что все корни данного уравнения принадлежат промежутку . Действительно, если

.

Но тогда в исходном уравнении слева стоит произведение больше восьми, а справа единица, что невозможно.

Решение с помощью тригонометрической подстановки

Положим . Тогда каждому корню исходного уравнения будет соответствовать ровно один корень , где . Наоборот, каждому корню уравнения соответствует ровно один корень исходного уравнения. Таким образом, задача может быть переформулирована так: сколько корней на промежутке имеет уравнение

.

Так как и , то можно взять . Заметим, что если - корень данного уравнения, то и тоже корень. Вот почему достаточно рассмотреть , то есть отыскать только положительные решения. С учетом выше изложенного исходное уравнение перепишется в виде

.

Так как , то можно обе части равенства умножить на , получим

.

Ответ: шесть корней.

Алгебраическое решение

Так как выражение от правой части равенства четное и и , выясним вопрос о наличии корней на промежутке . Проверкой устанавливаем, что – корень. Рассмотрим функции от правой и левой частей уравнения, то есть функции и . Так как

и функция непрерывна на числовой прямой, то найдутся такие значения и , что . Поэтому на промежутке уравнение имеет три корня, а на всей числовой прямой – шесть корней.

Ответ: 6 корней.

В данном случае можно решать любым способом, но если количество корней на небольшом промежутке достаточно велико, вычисления могут оказаться громоздкими, и сам метод неэффективным. В этом случае на помощь приходит метод тригонометрической подстановки. Надо заметить, что решить вопрос о количестве корней можно с помощью производной, но в данном случае такое решение мало эффективно, так как затруднительно найти нули производной.

Пример 2. Решить уравнение

.

Если для выше приведенных задач не удается найти нетрадиционный путь решения, то все равно остается вероятность справиться с задачей с помощью стандартных школьных рассуждений, правда, затратив при этом гораздо больше времени. Эта задача лишает такого выбора, так как ее решение другим способом не представляется возможным.

Решение с помощью тригонометрической подстановки

Поделим все члены уравнения на 2. Уравнение примет вид

.

Докажем, что все корни данного уравнения по модулю не превосходят единицы. Пусть , тогда . Получили, что при левая часть уравнения по модулю больше единицы, а правая – меньше единицы, что невозможно.

Положим . Уравнение примет вид

.

Условию удовлетворяют три значения

.

Поскольку кубическое уравнение не может иметь больше трех различных корней, то мы нашли все решения.

Ответ: .

1.3 Показательные уравнения

Приведем пример задания, решить которое без введения тригонометрической подстановки не представляется возможным.

Пример 1. Решить уравнение .

Пусть , тогда уравнение перепишется в виде

.

Введем замену , получим

.

Это уравнение мы уже решали1. Его корни

.

Два последних значения меньше нуля, поэтому нам подходит только . Перейдем к переменной , а затем к переменной

.

Ответ: .

§2. Решение систем

В данном параграфе предложены системы повышенной сложности, решить которые, не зная специальных методов решения, сложно.

Пример 1. Решить систему уравнений

[3].

Решение с помощью тригонометрической подстановки

Так как квадрат суммы чисел и равен единице, то каждое из этих чисел по модулю не превосходит единицы и их можно рассматривать как синус и косинус некоторого угла. Поэтому можно положить Второе уравнение системы примет вид

.

Условию удовлетворяют четыре значения

.

.

.

.

.

Ответ: ; ; ; .

Алгебраическое решение

.

Пусть , тогда . Имеем

.

Подберем так, чтобы многочлен, стоящий в правой части равенства, стал полным квадратом. Для этого он должен иметь один двукратный корень, то есть

.

Подбором находим, что является корнем уравнения

.

Подставим в уравнение , после чего оно примет вид

.

Перейдем к переменной

Подставив получившиеся значения переменной во второе уравнение системы, найдем соответствующие значения переменной

Ответ: ; ; ; .

Пример 2. Сколько решений имеет система уравнений

[18].

Здесь представлена так называемая циклическая система уравнений. Подобные системы часто предлагаются на вступительных экзаменах в вузы с повышенными требованиями по математике [30]. Решить эти системы, не зная специальных методов решения, очень сложно. В данном случае подбором устанавливается решение . Попытки доказать, что система не имеет других решений, положительных результатов не дают. Неоценимую помощь в решении такого класса задач оказывает метод тригонометрической подстановки.

Перепишем систему в виде

.

Докажем, что все числа по абсолютной величине не превосходят единицы. Пусть – максимальное из чисел и , то . Пришли к противоречию. Если число – минимальное и , то . Опять пришли к противоречию. Итак .

Решение с помощью тригонометрической подстановки

Положим . Тогда , , . Число решений исходной системы равно числу решений уравнения

.

Условию удовлетворяет 27 решений

.

Ответ: .

Алгебраическое решение

Выразим переменную

.

Выяснить количество корней полученного уравнения с помощью производной или другим способом чрезвычайно трудно, поэтому в данном случае самый эффективный способ решение – решение с помощью тригонометрической подстановки.

§3. Доказательство неравенств

Как правило, навыки решения и доказательства неравенств, за исключением квадратичных, формируются на более низком уровне, чем уравнений. Эта особенность имеет объективную природу: теория неравенств сложнее теории уравнений. Тем не менее, многие приемы и методы решения неравенств совпадают с приемами и методами решения уравнений. В том числе, к доказательству неравенств применим метод замены переменной. При этом замена переменных, входящих в неравенство, с одной стороны, сокращает число переменных, а с другой, позволяет привести неравенство к виду, более удобному для исследования его свойств.

Пример 1. Доказать, что [43].

При неравенство верное.

Решение с помощью тригонометрической подстановки

Для любых найдется угол , что . Исходное неравенство примет вид

.

Так как , то . Умножим обе части неравенства на , получим

.

Второй множитель всегда положительный, а первый не превосходит 0, поэтому все произведение не положительно.

Алгебраическое решение

Выполним решение с помощью тождественных преобразований. Для этого рассмотрим разность

.

Оба решения по простоте реализации не уступают друг другу. Решение с помощью тригонометрической подстановки может быть дано как один из возможных способов решения.

Пример 2. Известно, что . Доказать, что [9].

Решение с помощью тригонометрической подстановки

Так как сумма квадратов и равна единице, то каждое из чисел и по абсолютной величине не превосходит единицы, и их можно рассматривать как синус и косинус некоторого угла. Поэтому законна подстановка

.

Аналогично . Доказываемое неравенство запишется в виде

.

Алгебраическое решение

Алгебраическое решение в данном случае будет состоять в возведении обеих частей неравенства в квадрат и выполнении тождественных преобразований.

.

Обычно неравенство при заданных условиях доказывается, когда изучаются приложения комплексных чисел. Но еще до изучения комплексных чисел оно может быть рассмотрено с учащимися, причем доказательство с помощью тригонометрической подстановки довольно компактно. Единственное, на что в данном случае следует обратить внимание учащихся – полное обоснование введения подстановки.

§4 Задачи на нахождение наибольшего и наименьшего значений функции.

Задачи, связанные с поиском наибольшего и наименьшего значений функции, неспроста пользуются большой популярностью у составителей экзаменационных заданий: чтобы решить подобную задачу, приходится комбинировать приемы и методы из весьма различных разделов школьного курса математики. Первое, что приходит в голову при решении подобных задач, – исследовать функцию на наибольшее и наименьшее значения с помощью производной. Но у такого подхода есть недостаток: во многих задачах вступительных экзаменов в вузы с повышенными требованиями по математике этот привычный путь решения сопряжен со значительными техническими трудностями. В условиях конкурса этот недостаток особенно ощутим. Часто, однако, удается избавиться от громоздких выкладок, применяя понятия и навыки из других разделов школьного курса математики. Например, из тригонометрии.

Характеристики

Тип файла
Документ
Размер
7,89 Mb
Предмет
Учебное заведение
Неизвестно

Список файлов ВКР

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6358
Авторов
на СтудИзбе
311
Средний доход
с одного платного файла
Обучение Подробнее