86109 (589932), страница 2
Текст из файла (страница 2)
В роботі необхідно розв’язати наступні задачі.
І. Методами лінійного регресійного аналізу дослідити
-
залежність захворюваності на туберкульоз (всі форми) та туберкульоз легенів від року спостереження,
-
залежність захворюваності на рак від року спостереження,
-
залежність захворюваності на СНІД від року спостереження,
-
залежність захворюваності на гепатит А від року спостереження,
-
залежність захворюваності на гепатит Б від року спостереження
(спостереження захворюваності відбувалося з 1990 по 2005 роки в кожній з 24 областей України, А.Р. Крим, м. Київ, м. Севастополь та Україні в цілому). Зробити висновки.
ІІ. Методами лінійного регресійного аналізу провести порівняння захворюваності на туберкульоз (всі форми), туберкульоз легенів, рак, СНІД, гепатит А, гепатит Б серед областей України, А.Р. Крим, м. Київ та Севастополь з метою виявлення регіонів України, в яких темпи росту або спадання захворюваності однакові або захворюваність кількісно однокова. Зробити висновки.
Методи дослідження. В роботі використовуються методи лінійного регресійного аналізу.
РОЗДІЛ 1. ЛІНІЙНА РЕГРЕСІЯ
1.1 Метод найменших квадратів. Властивості оцінок найменших квадратів. Оцінювання σ2. Теорія розподілів. Оцінювання при наявності лінійних обмежень
Нехай Y - випадкова величина, яка флуктуює навколо деякого невідомого параметра η, тобто Y = η + ε, де ε - флюктуація або „помилка". Наприклад, ε може бути „природною" флуктуацією, яка властива самому експерименту, або може бути помилкою у вимірюванні значення η.
Припустимо, що η можна подати у вигляді
η = β0 + β1x1 + … + βp-1xp-1,
де х1, х2, ..., xp-1 - відомі постійні величини, а βj (j = 0, 1, .., p - 1) - невідомі параметри, які підлягають оцінюванню. Якщо значення хj, j = 0, 1, .., p – 1 змінюються і при цьому спостерігається n значень Y1, Y2, ...,Yn змінною Y, то
Yi = β0 + β1xi1 + … + βp-1x i,p-1 + εi, i = 1, 2, ..., n, (1.1.1)
де xij i-те значенням для хj. В матричному вигляді (1.1.1) запишеться
або
Y = Xβ + ε, (1.1.2)
де x10 = x20 = ... = xn0 = 1.
Означення. Матриця X = Х(n p) називається регресійною матрицею. При цьому значення xij зазвичай вибираються так, щоб стовпці цієї матриці були лінійно незалежними, тобто ранг матриці X дорівнював р. Проте в деяких випадках при плануванні експерименту елементи матриці X обираються рівними тільки нулю і одиниці, і її стовпці можуть виявитися лінійно залежними. В цьому випадку матрицю X називають матрицею плану.
Далі хj називатимемо регресором, а Y – відкликом.
Модель (1.1.1) або (1.1.2) лінійна по відношенню до невідомих параметрів βj, тому її називають лінійною моделлю.
Одним з методів знаходження оцінки вектора β є метод найменших квадратів. Цей метод полягає в мінімізації суми по відношенню до вектора β. Точніше, вважаючи θ = Xβ, мінімізуємо величину ε'ε = ||Y- θ||2 по відношенню до θ
[Х] = Ω, де Ω - образ оператора X, тобто Ω = {у: у = Хх} для деякого х. Якщо змінювати значення вектора θ в межах Ω, то ||Y- θ||2 (квадрат довжини вектора Y- θ) досягає мінімуму при тому значенні θ =
, для якого (Y -
)
Ω (рис.1.1.1). Тому
X'(Y - ) = 0,
Або
Х' = Х'Y. (1.1.3)
Вектор визначається однозначно, оскільки він є ортогональною проекцією вектора Y на Ω. Якщо тепер стовпці матриці X лінійно незалежні, то існує
Рис. 1.1.1 Метод найменших квадратів полягає у знаходженні такої точки А, для якої відстань АВ мінімальна
єдиний вектор , для якого
= X
. Підставлячи
в (1.1.3), одержуємо нормальне рівняння
Х'Х = Х'Y. (1.1.4)
Оскільки ми припускаємо, що матриця X має ранг р, то матриця Х'Х додатньо визначена і, отже, не вироджена. Тому рівняння (1.1.4) має єдиний розв’язок, а саме
= ( Х'Х)-1 Х'Y
Цей розв’язок називається оцінкою найменших квадратів вектора β.
Оцінку для β можна одержати й в інший спосіб.
ε'ε = (Y-Хβ)'(Y-Хβ) = Y'Y - 2β'Х'Y+ β'Х'Хβ
(використовуємо той факт, що β'Х'Y = (β'Х'Y)' = Y'Хβ). Продиференцюємо ε'ε по β. Прирівнюючи одержану похідну ε'ε/
β нулю, приходимо до рівняння
- 2Х'Y +2Х'Хβ = 0, (1.1.5)
Або
Х'Хβ = Х'Y.
Звідки
= ( Х'Х)-1 Х'Y
Покажемо, що знайдена стаціонарна точка є мінімумом функції ε’ε. Перепишемо (Y-Хβ)’(Y-Хβ) у вигляді
(Y-Хβ)'(Y-Хβ) = (Y-Х )'(Y-Х
) + (
- β)'Х'Х(
- β). (1.1.6)
Розпишемо
(Y-Х )'(Y-Х
) + (
- β)'Х'Х(
- β) = (Y'-Х'
')(Y-Х
) +
+ ( ' - β')(Х'Х
- Х'Хβ) = Y'Y - Y'X
-
'X'Y +
'X'X
+
+ 'X'X
-
'X'X
-
'X'X
+
'X'X
=
= {X'X = X'Y, оскільки
- розв’язок нормального рівняння} =
= Y'Y - Y'X -
'X'Y +
'X'Y +
'X'Y -
'X'X β – β'X'Y + β'X'Xβ =
= Y'Y - Y'Xβ – β'X'Y + β'X'X β = (Y - Xβ)'(Y - Xβ)
Ліва частина в (1.1.6) досягає мінімуму при β = .
Далі позначимо = Х
. Елементи вектора
e = Y – = Y – Х
= (In - Х(Х'Х)-1Х')Y = (In - Р)Y (1.1.7)
називаються залишками (ми позначили тут скорочено Х(Х'Х)-1Х' через Р). Мінімальне значення ε'ε називається залишковою сумою квадратів (RSS)).
RSS = (Y - Х )'(Y - Х
)= Y'Y - 2
Х' Y +
'Х'Х
=
= Y’Y - 'Х' Y +
'[Х'Х
- Х'Y] =
= Y'Y - 'Х'Y (1.1.8)
Або
RSS = Y'Y - 'Х'Х
(1.1.9)
Відмітимо, що і е єдині.
Оскільки = Х
= Х(Х'Х)-1Х'Y = РY, то Р є матрицею лінійного перетворення, яке є ортогональним проектуванням n-мірного евклідова простору Еn на Ω. Аналогічно In - Р є матрицею ортогонального проектування Еn на
- ортогональне доповнення до Ω в Еn. Тому вираз Y = РY + (In - Р)Y є єдиним ортогональним розкладом вектора Y на дві складові, одна з яких лежить в Ω, а інша - в
. Деякі основні властивості матриць Р і (In - Р) наведено в теоремі 1.1.1. Спочатку сформулюємо деякі означення.
Означення. Слідом trX матриці Х називають суму її діагональних елементів
trX = 1 + x21 + x32 + … + xnp-1
Означення. Матриця Р називається ідемпотентною, якщо Р2 = Р. Симетрична ідемпотентна матриця називається проекційною. Якщо Р – проекційна матриця, то trР = rankР.
Теорема 1.1.1.
(I) Матриці Р і In - Р симетричні та ідемпотентнi.
(II) rank[In - Р] = tr[In - Р] = n - р.
(III) (In - Р)Х = 0.
Доведення.
(I) Р' = (X(X'X)-1X')' = X((X'X)-1)'X' = X(X'X)-1X' = P
Отже, матриця Р є симетричною і (In - Р)' = In - Р' = In - Р. Крім того,
Р2 = X(Х'Х)-1Х'Х(Х'Х) -1X' = XIp (Х'Х)-1X' = Р,
і (In – Р)2 = In - 2Р + P2 = In – Р.
(II) Оскільки матриця In - Р симетрична та ідемпотентна, то вона проекційна і tr(In – Р) = rank(In – Р). Тоді
rank[In - Р] = tr[In - Р] = n - trР,
де
trР = tr[X (Х'Х)-1X'] = tr[Х'Х (Х'Х)-1] = trIp = р.
-
(In - Р)Х = Х - Х(Х'Х)-1Х'Х = Х - Х = 0.
Теорема доведена.
Теорема 1.1.2.
Нехай Р = X(Х'Х)-1X', тоді R(P) = R(X), тобто простір, породжений стовпцями матриці P є простором, породженим стовпцями матриці Х.
Доведення.
R(P) = {z: z = Pα} для деякого α, R(X) = {Y: Y = Xγ} для деякого γ.
Вибираємо z R(P), тоді z = Pα. Отже,
z = Pα = X(X'X)-1X'α = Xβ,
отже z R(X).
Вибираємо Y R(X), тоді Y = Xγ
Y = Xγ = X(X'X)-1X'Xγ = X(X'X)-1X'Xγ = PY,
отже Y R(P).
Теорема доведена.
Теорема 1.1.3.
(Y -
) = 0 або
Доведення.
(Y -
) = {
= X
= X(X'X)-1X'Y = PY} = (PY)'(Y – PY) = Y'P'(1 – P)Y = = Y'P(1 – P)Y = Y'(P – P2)Y = Y'(P – P)Y = 0.
Теорема доведена.
Якщо припустити, що помилки ε такі, що , то
M[ ] = (X’X)-1X’M[Y] = (X’X)-1X’X β = β (1.1.9)
тобто є незміщеною оцінкою вектора β. Якщо, окрім того, припустити, що всi εi, і = 1, …, n - некорельовані і мають однакову дисперсію, тобто
соv[εi, εj] = ,
то D[ε] = σ2In,
D[Y] = D[Y - Xβ] = D[ε], отже D[Y] = σ2In.
Звідси одержуємо
D[ ] = D[(Х'Х)-1Х'Y] = сov((Х'Х)-1X'Y, (Х'Х)-1X'Y) =
= (X'X)-1X'cov(Y,Y)((X'X)-1X')' = (X'X)-1X'DYX(X'X)-1 =
= (X'X)-1X'σ2IX(X'X)-1 = σ2(X'X)-1(X'X) (X'X)-1 = σ2(X'X)-1 (1.1.10)
Виникає таке питання: чому за оцінку вектора β ми вибираємо саме (оцінку найменших квадратів), а не будь – яку іншу оцінку? Далі покажемо, що в деякому розумному класі оцінок
j, є оцінкою параметра βj з найменшою дисперсією. Цю оцінку
j можна „виділити" з вектора
= (
0,
1, ...,
p-1)' множенням зліва на вектор-рядок c', у якого (j +1)-й елемент рівний одиниці, а всі інші елементи дорівнюють нулю. Таку специфічну властивість оцінки
j, можна узагальнити на випадок довільної лінійної комбінації а'
. Для цього використовуємо наступну теорему.
Теорема 1.1.4.
Нехай - оцінка найменших квадратів вектора
= Хβ. Тоді в класі всіх лінійних незміщених оцінок лінійної комбінації c'θ оцінка c'
є єдиною оцінкою, яка має мінімальну дисперсію. (Будемо говорити, що c'
є найкращою лінійною незміщеною оцінкою (НЛНО) для c'θ)
Доведення.
Оцінку найменших квадратів вектора
= Хβ представимо у вигляді
= X = X(Х'Х)-1X'Y = X(Х'Х)-1X'Y = PY,
при цьому