86109 (589932), страница 3
Текст из файла (страница 3)
PX = X(Х'Х)-1X'X = X(Х'Х)-1X'X = XI = X .
Перевіримо, що c' - лінійна незміщена оцінка для c'θ. Дійсно,
M[c' ] = Mc'РY = c'P MY = c'Pθ = c'PXβ = c'Xβ = c'θ
для всіх θ Ω =
[Х] і c'
= c'PY = (P'c)'Y = (Рс)'Y. Розглянемо іншу лінійну незміщену оцінку для c'θ. Тоді M[d'Y] = c'θ з одного боку, а з іншого
M[d'Y] = d'MY = d'θ,
Тоді
c'θ = d'θ (с' - d')θ = 0
(с- d)'θ = 0, тобто (c - d)
Ω = R(X).
Оскільки R(X) = R(P) в силу теореми 1.1.2, то
(c – d) R(P), (c – d)'P = 0
((c – d)'P)' = 0'
P(c – d) = 0
Pc = Pd
Порахуємо дисперсію оцінки c' :
Dc' = D[(Рd)'Y] = D[(Рd)'Y] = Dd'P'Y = cov(d'P'Y, d'P'Y) =
= d'P'cov(Y, Y)(d'P')' = d'PDYPd = d'Pσ2IPd = σ2d'Р2d = σ2 d'Рd,
Тоді
D[d'Y] - D[c' ] = D[d'Y] - D[(Рd)' Y] =
= d'DYd - σ2d'Pd = σ2d'd - σ2d'Pd =
= σ2(d'd - d'Рd) = σ2d'(In - Р)d = {In – P = (In – P)2} =
= σ2 d'(In - Р)(In - Р)d = {In – P = (In – P)'} =
= σ2 d'(In - Р)'(In - Р)d = σ2 [(In - Р)d]'[(In - Р)d] ≥ 0
Рівність нулю досягається тоді й тільки тоді, коли
(In - Р)d = 0
d – Pd = 0
d = Рd = Рс
Тоді D(d'Y) ≥ D(c' ), при цьому c'θ = d'θ. Це і означає, що c'
має мінімальну дисперсію і є єдиною оцінкою з такою властивістю в класі всіх лінійних незміщених оцінок лінійних комбінацій c'θ.
Теорема доведена.
Теорема доведена в припущенні, що матриця X має ранг p, так що Р = X (Х'Х)-1X', і θ =Хβ випливає, що β = (Х'Х)-1Х'θ.
Нехай с' = а'(Х'Х)-1X', тоді звідси оцінка а'β = a'(X’X)-1X' = с'
є НЛНО з мінімальною дисперсією для а'β при кожному а.
Зауваження. Якщо похибки εі незалежні й однаково розподілені ε ~ або, в еквівалентній формі, Y ~
, то a'
має мінімальну дисперсію серед усіх незміщених оцінок, а не тільки в класі лінійних незміщених оцінок.
Зокрема, МНК – оцінка і, і = 0, …, p – 1 є також оцінкою максимальної правдоподібності, і вона ефективна оцінка для βі.
Якщо ж розподіл εi не є нормальним, то МНК – оцінка і відрізняється від оцінки максимальної правдоподібності. В цьому випадку МНК – оцінка
і асимптотично ефективна для βі.
Оцінимо параметр σ2 = Dεi, але спочатку сформулюємо низку лем.
Лема 1.1.1. Нехай Y = Y(n×1) – випадковий вектор, А(n×n) = A – симетрична матриця. Якщо MY = θ, DY = ∑, тоді математичне сподівання квадратичної форми Y'AY дорівнює
M(Y'AY) = tr(A∑) + θ'Aθ
.Наслідок
Якщо ∑ = σ2I, то tr(A∑) = σ2trA.
Лема 1.1.2.
Нехай маємо n незалежних випадкових величин Y1, Y2, …, Yn з середніми θ1, θ2, …, θn, однаковими дисперсіями μ2 та однаковими третіми та четвертими центральними моментами μ3 та μ4 відповідно (μr = M(Yi – θi)r). Якщо A = = А(n×n) – симетрична матриця, а a – вектор – стовпець, утворений її діагональними елементами, тоді дисперсія квадратичної форми Y'AY дорівнює
D(Y'AY) = (μ4 – 3(μ2)2)a'a + 2(μ2)2trA2 + 4(μ2)2θ'A2θ + 4μ3θ'Aa
Теорема 1.1.4.
Якщо
М[Y] = Xβ, де Х = X(n×p), rangX = p, D[Y] = σ2 In,
тоді оцінка
є незміщеною оцінкою для σ2.
Доведення.
Похибку ε запишемо у вигляді:
ε = Y - = Y - Х
= {
= (X'X)-1X'Y } = Y – X(X'X)-1X'Y =
= (In – X(X'X)-1X')Y = (In - Р)Y.
Тоді
(n - p)S2 = (Y - X )'(Y - X
) = ((In – P)Y)'((In – P)Y) = Y'(In – P)'(In – P)Y = {(In – P)' = In – P – симетрична} =Y'(In – P)2Y = Y'(In – P)Y.
Виразимо Y'(In – P)Y з рівності:
(Y – Xβ)'(In – P)(Y – Xβ) = Y'(In – P)Y – Y'(In – P)Xβ – (Xβ)'(In – P)Y + (Xβ)'(In – P)Xβ;
Y'(In – P)Y = (Y – Xβ)'(In – P)(Y – Xβ) + Y'(In – P)Xβ + (Xβ)'(In – P)Y - (Xβ)'(In – P)Xβ.
Порахуємо M(n – p)S2
M(n – p)S2 = MY'(In – P)Y = {лема 1.1.1} = M(Y – Xβ)'(In – P)(Y – Xβ) +
+ MY'(In – P)Xβ + M(Xβ)'(In – P)Y – M(Xβ)'(In – P)Xβ =
= M(Y – Xβ)'(In – P)(Y – Xβ) + (Xβ)'(In – P)Xβ + (Xβ)'(In – P)Xβ –
- (Xβ)'(In – P)Xβ = M(Y – MY)'(In – P)(Y – MY) =
= + (Xβ)'(In – P)Xβ =
= + (Xβ)'(In – P)Xβ =
= + (Xβ)'(In – P)Xβ =
= σ2(p11 + p22 + … + pnn) + β'X'(In – P)Xβ =
= σ2tr(In – P) + β'X'(In – P)Xβ = =
= σ2(n – p) + 0 = σ2(n – p)
Отже,
M(n – p)S2 = σ2(n – p) MS2 = σ2.
Теорема доведена.
Виявляється, що S2, подібно до , має певні властивості оптимальності, які наведено в наступній теоремі.
Теорема 1.1.5.
Нехай Y1, Y2, …, Yn – незалежні випадкові величини, які мають однакові дисперсії μ2 = 3σ2 і однакові треті та четверті моменти μ3 і μ4. Якщо M[Y] = Xβ, де матриця Х = Х(n × p), rangX = p, то DY = σ2I і (n – p)S2 є єдиною невід’ємною квадратичною незміщеною оцінкою для (n – p)σ2, яка має мінімальну дисперсію при μ4 = 3σ4 або при рівності всіх діагональних елементів матриці P.
Доведення.
Оскільки σ2 > 0, то будемо розглядати тільки невід’ємні оцінки.
Нехай Y'АY незміщена квадратична оцінка для (n - р)σ2. Порахуємо математичне сподівання та дисперсію оцінки Y'АY
(n - р)σ2 = M[Y'АY] = σ2 trА + β'Х'АХβ
для всіх β, тоді trА = n - р і β'Х'АХβ = 0 для всіх β. Отже, Х'АХ = 0 А- додатньо напіввизначена симетрична матриця
з Х'АХ = 0 випливає, що АХ = 0.
Позначимо а – вектор, утворений діагональними елементами матриці А і γ2 = (μ4 - 3σ4)/σ4, тоді згідно з лемою 1.1.2,
D[Y'АY] = (μ4 – 3(μ2)2)a'a + 2(μ2)2trA2 + 4(μ2)2(Xβ)'A2(Xβ) + 4μ3(Xβ)'Aa =
= = (μ4 – 3(μ2)2)a'a + 2(σ2)2trA2 + 4(σ2)2β'X'AXβ +
+ 4μ3β'(AX)'a = σ4 γ2 а'а + 2σ4 trА2 . (1.1.11)
Далі розглянемо оцінку (n - р)S2, яка належить класу незміщених квадратичних оцінок для (n - р)σ2 згідно з теоремою 1.1.4
(n - р)S2 = (Y - X )’(Y - X
) = Y(In - Р)Y = Y'RY
(де для стислості, введене позначення In - Р = R), trR2 = trR = n - р.
Розглянемо D[Y'RY]:
D[Y'RY] = σ4 γ2 r'r + 2σ4trR2 = σ4 γ2 r'r + 2σ4 (n - р). (1.1.12)
де r – вектор, утворений діагональними елементами матриці R.
Для того, щоб знайти достатні умови для мінімальності дисперсії оцінки Y'АY, покладемо А = R + D. Оскільки A та R симетричні, то матриця D також симетрична і trА = trR + trD.
Підставляємо: (n – p) = (n – p) + 0 таким чином, trD = 0. Оскільки АХ = 0, то АР = АХ(Х'Х)-1X' = 0, тоді
A = R + D
AP = RP + DP
AP = P – P2 + DP
0 = P – P + DP
DP = 0
Тоді
DR = D – DP = D – 0 = D
(останнє рівне також D = D' = RD, так як D симетрична).
Позначимо a = r + d, r – вектор діагональних елементів матриці R, d– вектор діагональних елементів матриці D.
A2 = (R + D)2 = R2 + DR + RD + D2 = R + 2D + D2
tr A2 = trR + 2trD + trD2 = (n - р) + trD2.
Підставляючи а = r + d і tr A2 в (1.1.11), одержуємо
D[Y'АY] = σ4 γ2 a'а + 2σ4trA2 = σ4 γ2(r + d)'(r + d) + 2σ4(n – p + trD2) =
= σ4 γ2(r' + d')(r + d) + 2σ4(n – p + trD2) =
= σ4 γ2(d'r + d'd + r'r + r'd) + 2σ4(n – p + trD2) =
= σ4γ2 r'r + 2σ4(n – p) + 2σ4 =
= D[Y'RY] + 2σ4 .
Щоб знайти оцінку з мінімальною дисперсією, потрібно мінімізувати D[Y'АY] за умов tr D = 0 і DR = D. У загальному випадку виконати таку мінімізацію досить важкою. Проте в двох важливих окремих випадках ця мінімізація виконується не важко. Перший випадок - це ситуація, коли γ2 = 0 При цьому
D[Y'AY] = D[Y'RY] + 2σ2
Остання ж величина досягає мінімуму, коли dij = 0 для всіх i, j, тобто коли D = 0 і А = R. Другий випадок - це випадок рівності всіх діагональних елементів матриці Р. При цьому всі вони рівні р11 = p22 = … = pnn
trR = trI – trP = n – p tr Р = р.
Тому
р11 + p22 + … + pnn rii = p
npii = p pii = p/n
Тоді діагональні елементи матриці R = (I – P) дорівнюють rii = 1 – pii = 1 – p/n = (n - р)/n для кожного і
D[Y'AY] = D[Y'RY] + 2σ4( =
= =
= D(Y'RY) + 2σ4 =
= D[Y'RY] + 2σ4 , (1.1.13)
Далі для будь–якої випадкової величини ξ виконується нерівність γ2 ≥-2. Дійсно,
0 ≤ D(ξ – Mξ)2 = M(ξ – Mξ)4 – (M(ξ - Mξ)2)2 = μ4 – (μ2)2 =
= μ4 – 3(μ2)2 + 2(μ2)2 = (μ2)2(μ4 / (μ2)2 – 3 + 2) =
= = (μ2)2(γ2 + 2), отже γ2 ≥ -2
отже D[Y'АY] досягає мінімуму, коли dij = 0 для всіх i, j. Таким чином, в обох випадках дисперсія виявляється мінімальною тоді і тільки тоді, коли А = R. Теорема доведена. Доведена теорема говорить про те, що незміщена квадратична оцінка для σ2, з мінімальною дисперсією існує тільки при певних обмеженнях, наведених в теоремі. У припущенні нормальності, тобто при γ2 = 0, оцінка S2 є незміщеною оцінкою для σ2, яка має мінімальну дисперсією в класі всіх незміщених оцінок, а не тільки в класі квадратичних незміщених оцінок. Раніше ми припускали відносно похибок εi, що M[ε] = 0 і D[ε] = σ2In. Якщо додатково припустити, що похибки εi розподілені нормально, тобто ε ~ Nn(0, σ2In) (отже Y ~ Nn(Xβ, σ2In)), то можна одержати низку наступних результатів, пов'язаних з розподілами.
Теорема 1.1.6. Якщо Y ~ Nn(Xβ, σ2In), де Х = Х(n×p), rangX = p, тоді
-
~ Np(β, σ2(X'X)-1);
-
(
- β)'X'X(
- β)/σ2 ~
;
-
не залежить від S2;
-
RSS/σ2 = (n – p)S2/σ2 ~
.
Доведення. (I) МНК – оцінка вектора β має вигляд = (Х'Х)-1Х'Y, тоді
= СY, де C = (Х'Х)-1Х' - матриця розміру р×n, для якої rangС = rang(Х'Х)-1Х' = rangХ-1(Х')-1X' = rangХ-1 = p. Вектор Y ~ Nn(Xβ, σ2In). Генератриса моментів для вектора
дорівнює
M = M
.
M(t) = M = M
=
= M
=
=
=