Главная » Просмотр файлов » Газодинанамика в одно- и двухфазных течений в реактивных двигателях

Газодинанамика в одно- и двухфазных течений в реактивных двигателях (562026), страница 25

Файл №562026 Газодинанамика в одно- и двухфазных течений в реактивных двигателях (Газодинанамика в одно- и двухфазных течений в реактивных двигателях) 25 страницаГазодинанамика в одно- и двухфазных течений в реактивных двигателях (562026) страница 252015-11-27СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 25)

Газодинамически и конструктивно это реализуется следующим образом. Поскольку за замыкающим скач- Рис. 7.16. Диффузоры с различными типами организации процесса сжатия: а — внешнее сжатие; 6 — внутреннее сжатие; в — смешанное сжатие ком скорость дозвуковая, канал диффузора выполняется в виде сопла Лаваля с минимальным (критическим) сечением, поток за прямым скачком снова ускоряется до скорости звука в минимальном сечении и далее до сверхзвуковой скорости в расширяющейся части диффузора, обозначенной цифрой 11.

Здесь с помощью прямого скачка небольшой интенсивности поток переходит к дозвуковой скорости. При наличии такого регулирующего скачка повышение противодавления или его понижение за выходным сечением приводит только к перемещению скачка в расширяющейся части канала в ту или другую сторону.Так же, как на режимах работы сопла Лаваля с большим противодавлением на выходе, регулирование возможно, пока скачок не достиг критического сечения. Как выбрать параметры многоскачковой системы при заданном числе скачков, чтобы обеспечить максимальное значение коэффициента восстановления давления? Исследования показывают, что максимальное значение о обеспечивает система ск скачков одинаковой интенсивности, которая называется оптимальной.

Для косых скачков это условие означает равенство нормальных составляющих чисел М всех скачков. Рассмотрим работу трехскачкового диффузора на различных скоростных режимах по числу М: М = М, М < М н н н расч ' н н расч и М > М . Расчетным числом М н н расч н расч сверхзвукового диффузора называют число М, обеспечивающее при д = 1 максин' д мальное значение а и дополнительное сопротивление С = О. А Х дюЛ На расчетном режиме М = М ч (р = 1 (рис. 7.17,а), все !90 «) Мн = Мрасч ~рд = 1 б) Мм<Мрасч ярд<1 Ен=Е в) Ми > Мрасч дд= 1 Рис.

7.17. Режимы работы многоскачкового диффУзора Рис. 7.17 (г) скачки сходятся на кромке обечайки, С = О, а = а . На х ' д д расч доп рисунке показано изменение некоторых параметров для выделенной линии тока аЬсде. Поток тормозится в скачках (аЬс), разгоняется на участке сИ, проходит критическое сечение (Ы) и далее разгоняется в расширяющейся части (де) до прямого скачка (е), за которым поток становится дозвуковым. При этом в сечении 1 давления р1 — — р,„за диффузором. На нерасчетном режиме по скорости М < М, полученн н расч * ном снижением скорости набегающего потока (рис. 7.17,6), углы наклона а скачков к вектору скорости увеличиваются и скачки отходят от кромки обечайки.

При этом площадь струйки або Г~, входящей в диффузор, меньше 2" и коэффициент расхода ~ < 1. Так как за отошедшими скачками повышенное д давление действует на лобовую часть диффузора, появляется дополнительное сопротивление С > О. Потери в скачках а,б,о х меньше (из-за уменьшения скорости). Очевидно, должно соблюдаться уравнение неразрывности Рн~7М~ Ркр Ч~'нр)~ р РнуЮ~ (7.50) для сечения входящей струйки и критического сечения диффузора. Однако при уменьшении М у (Х ) уменьшается, и в минимальном сечении скорость станет дозвуковой, а регулировочный скачок вовсе исчезнет. В пределе диффузор перейдет на работу с выбитой ударной волной дЬс (см.

рис. 7.17,г). В этом случае О окажется меньше о, и еще сильнее возрастет д д расч * С . Если этого не произойдет, то в области критического се- ч ения возникает сложная волновая структура отраженных скачков, аналогичная показанной на рис. 7.17,в для другого режима. И в этом случае о будет меньше О Нерасчетный режим по скорости М > М, реализуется увеличением скорости набегающего потока (рис.

7.17,в). Углы наклона скачков к вектору скорости уменьшаются, скачки отходят от кромки обечайки и попадают внутрь диффузора, вызывая сложную структуру отраженных скачков. Кромка диффузора О дает центрированную волну разрежения в течении Прандтля-Майера, которая взаимодействует со скачком уплотнения. При этом коэффициент расхода р = 1, исчезает дополнительное сопротивление С = О, но а < о х д д расч Обеспечение режима работы диффузора требует выполнения граничного условия по давлению р =р „, поскольку течение на выходе из диффузора дозвуковое: М1 < 1.

Тогда соотношение (7.50) следует записать как Рн~( н) н Ркр ~7( кр) нр Рну( н) н = Р1 У (Х1) Г1 = Р1 Ч (Х1) Г1- (7.51) Рассмотрим один из режимов дросселирования диффузора путем повышения давления на выходе р,„(увеличение сопротивления). Пусть М = М „(рис. 7.17,а). Увеличение р сначала будет приводить к перемещению регулировочного прямого скачка в сторону критического сечения. При этом система расчетных внешних скачков сохраняется и о даже несколько д увеличивается за счет уменьшения потерь в прямом скачке.

При дальнейшем росте р,„(и р1) регулировочный скачок, проходя критическое сечение, исчезает, перед диффузором появляется выбитая ударная волна, дополнительное сопротивление С„и уменьшение о и ~р . Р1'131 д д Улучшение характеристик диффузора путем повышения о в принципе возможно за счет увеличения числа скачков и превращения их в слабые волны сжатия-характеристики. Тогда процесс будет изоэнтропным, а диффузор будет также называться изоэнтропным. Течение в этом случае соответствует обращенному течению Прантдля-Майера, в котором поверхность торможения выполнена по линии тока.

Однако реализация изоэнтропного диффузора наталкивается на целый ряд трудностей, главной из которых является наличие пограничного слоя на поверхностях обтекания. 7.3.10. Об учете реальных свойств течения и рабочего тела в диффузорах, Рассмотренная выше теория диффузоров качественно верно, а в некоторых случаях — количественно точно позволяет рассчитать параметры течения и геометрию канала. Вместе с тем влияние двумерности, граничных условий и необратимости в диффузорах более существенно, чем в соплах. Это объясняется тем, что в диффузорах идет процесс торможения, который для сверхзвуковых течений сопровождается образованием ударных вол.

Положение усугубляется тем, что пограничный слой в градиентном потоке диффузора и в, частности, при взаимодействии со скачками уплотнения имеет повышенную склонность к отрыву. "Однорежимность'* диффузора, связанная с нарушением условий уравнения неразрывности, влияние граничного условия по давлению на выходе приводят к необходимости регулирова.- ния диффузара. Цели регулирования — согласование расхода на различных режимах, удерживание оптимальной системы скачков для обеспечения <р = 1 а =о„, „и С =О„предотвращение неустойчивых режимов пульсации расхода (так называемого "помпажа*') и согласование граничного условия на выходе.

Для этого используют регулирование иглы диффузора как по положению, так и по проходному сечению канала с изменением наклона отклоняющих поверхностей, перепуск воздуха и отсос пограничного слоя, изменение минимального сечения и др. ~36, 371. 7.4. Газодинамические процессы в камере сгорания 7.4.1. Сопротивление. Жидкость, движущаяся относительно поверхности обтекаемого тела (или тело, движущееся относительно жидкости), взаимодействует с этой поверхностью, результатом чего является возникновение сил взаимодействия и энергетических эффектов взаимодействия.

Главный вектор, или вектор суммы всех сил, обычно разлагается на две составляющие: направление движения и направление нормали к вектору скорости ~381. Силой сопротивления Р называется составсопр ляющая главного вектора нормальных и касательных сил, действующих на поверхности тела по направлению, противоположному скорости движения. На преодоление силы сопротивления жидкость„движущаяся в канале, или тело, движущееся в жидкости, тратит свою полезную энергию (работоспособность, или эксергию). Для жидкости эти потери работоспособности (эксергии) реализуются уменьшением полного давления, или давле- 4 ния торможения, р . В зависимости от конкретного устройства или задачи величина потерь давления торможения оценивается либо абсолютной величиной уменьшения (7.52) ~1 Р2' где Р1, р, — давление торможения соответственно в начале и конце процесса, либо относительной величиной (7.53) В общем случае составляющими сопротивления являются сопротивление давления и сопротивление трения.

Рассмотрим некоторые случаи определения потерь давления торможения. 7.4.2. Гидравлические потери. Потери давления торможения в энергетически изолированном течении жидкости называют гидравлическими потперями. Различают два вида гидравлических потерь: 1) местные; 2) потери на трение в прямых каналах постоянного сечения (линейные потери). К местным потерям относят потери на внезапное или плавное расширение или сужение канала, поворот канала, краны, дроссели и т. п. Местные потери Лр подсчитываются по формуле Вейсбаха м раб. Рм где ~о,.

— среднемассовая скорость в сечении ~ канала; р плотность жидкости; г,. — коэффициент местного сопротивления, зависящий от вида сопротивления (формы) скоростного и гидродинамического режимов, определяемых М и Ве. Э Линейные потери Лр подсчитываются по формуле ДарсиВейсбаха ~2]: (7.55) где 1 — длина канала; д — диаметр канала; 1/д — длина канала в калибрах; и~ — среднемассовая скорость; р — плотность жидкости; с — коэффициент сопротивления трения, зависящий от критериев скоростного и гидравлического режима М и Ве и относительной шероховатости стенок канала й/д.

Здесь й — средняя высота гребешков шероховатости [39]. 7,4.3. Назначение камеры сгорания. Камера сгорания предназначена для подвода энергии в форме тепла к предварительно сжатому газу. Подвод тепла, как правило, производится путем сжигания топлива в атмосфере воздуха, используемого в качестве рабочего тела.

Основными газодинамическими процессами, определяющими работу камеры, являются процессы смешения, горения, подвода тепла, подвода массы и преодоления гидравлического сопротивления при течении газа. Некоторые аспекты течения газа с подводом тепла (тепловые скачки) в детонационных волнах рассматривались в разд. 5.7. Здесь рассмотрим процессы непрерывного и стационарного под- лить изменение параметров в зависимости от количества тепла д . Параметры в текущем сечении обозначим индексом 1. В кан' честве газодинамической системы примем объем рабочего тела, заключенный между сечениями О и 1 и поверхностью канала.

Анализ системы позволяет сделать вывод, что система энергетически не изолирована, т. е. дд ~ О, процесс не изоэнтропий- и ный: дЯ ~ О. Для рассматриваемого случая поведение системы будет определяться следующими уравнениями: 2 оИ~ (М вЂ” 1) — =- — 0~1 2 н ' (7.58) (М вЂ” 1) — =(1+ йМ ) 1+ М ИМ й-1, ИТ' М 2 Т* (7.59) вода тепла, массы и движение в цилиндрической трубе с трением, моделирующими разные аспекты течения в камере сгорания. Процессы смесеобразования, горения и другие, характерные для камер сгорания ВРД, обычно рассматриваются в специальных курсах. 7.4.4. Тепловое воздействие. Процессы с тепловым воздействием (подводом или отводом тепла) связаны не только с сжиганием топлива, но имеют место в различных теплообменных аппаратах, системах охлаждения стенок камер и др.

Характеристики

Тип файла
DJVU-файл
Размер
5,79 Mb
Тип материала
Высшее учебное заведение

Список файлов книги

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6489
Авторов
на СтудИзбе
303
Средний доход
с одного платного файла
Обучение Подробнее