zlobina_af01 (519754), страница 8

Файл №519754 zlobina_af01 (Учебник Злобина) 8 страницаzlobina_af01 (519754) страница 82013-09-12СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 8)

II – переходная область между электронной пушкой и областью фокусировки. Переходная область – важнейшая с точки зрения формирования пучка.

III – область пролетного канала (пролетной трубы) 4, в которой могут располагаться резонаторы, например, в случае клистрона, или отклоняющие устройства, например, в случае сварочной установки. В этой же области располагается и фокусирующая система 5. Конструкции таких систем многообразны. Она может состоять из нескольких соленойдов или из одного длинного соленойда. Эта поперечно-ограничивающая (фокусирующая) система создает магнитное или электрическое поле, препятствующее расширению электронного пучка в пролетной трубе. В случае длинных пучков важно не допустить оседания части тока пучка на стенках трубы, т.е. обеспечить хорошее токопрохождение пучка.

IV – приемник, или коллектор пучка 6, который может быть как пассивным, т.е. служить для отвода электронов пучка из прибора (анод), так и активным. В последнем случае основной эффект, ради которого создается прибор и формируется пучок, происходит именно в приемнике, например, плавка или сварка электронным лучом.

Широкому распространению электронно-лучевых приборов способствовали замечательные свойства электронного луча – практическая безынерционность, позволяющая перемещать луч в пространстве со скоростью, соизмеримой со скоростью света, возможность при помощи электронного луча анализировать быстро протекающие процессы, передавать и принимать телевизионные изображения, «переносить» изображения из одной части спектра в другую, «записывать» и «считывать» различную информацию. Сфокусированные пучки заряженных частиц «работают» в различных ускорителях в ядерной физике (циклотрон, бетатрон, синхротрон, линейные ускорители и др.). Созданы приборы, в которых для получения увеличенных изображений малых объектов вместо световых пучков используют электронные – электронные микроскопы.

Электронные и ионные пучки находят все более широкое применение в технологии (плавка, сварка и обработка материалов, сверление, получение новых материалов, упрочение, создание полупроводниковых переходов и т.д.).

4 ЭЛЕКТРОННО-ЛУЧЕВЫЕ ПРИБОРЫ (ЭЛТ)

Электронно-лучевым называется электронный электровакуумный прибор, в котором используется поток электронов, сфокусированный в форме луча или пучка лучей. Электронно-лучевой прибор, имеющий форму трубки, вытянутой в направлении луча, называют электронно-лучевой трубкой. В зависимости от числа используемых лучей различают одно-, двух- и многолучевые приборы.

Электронно-лучевые приборы классифицируют по их назначению. Электронно-лучевые приборы, преобразующие электрический сигнал в видимое изображение, называют приемными электронно-лучевыми трубками; к ним относятся осциллографические трубки, трубки для индикаторных радиолокационных установок, приемные телевизионные трубки – кинескопы и дисплеи.

Электронно-лучевые приборы, предназначенные для преобразования оптического изображения в последовательность электрических сигналов, используемые для передачи телевизионного изображения, называют передающими трубками.

К электронно-лучевым приборам относят также запоминающие трубки – приборы, предназначенные для записи сигналов на диэлектрике с последующим воспроизведением в виде оптического изображения, электрического сигнала или того и другого. В большинстве запоминающих трубок для записи воспроизведения (считывания) сигналов используют один или несколько электронных лучей.

К электронно-лучевым трубкам относят электронно-оптические преобразователи (ЭОП) – электронные электровакуумные приборы, предназначенные для переноса изображения из одной спектральной области в другую с помощью пучка электронных лучей, хотя, строго говоря, в этих приборах нет отдельных сфокусированных пучков – лучей, а изображение переносится широким электронным потоком.

4.1 Фокусировка электронного потока в электрических полях

Более 100 лет назад английским ученым Гамильтоном была подмечена аналогия между распространением света и движением материальных частиц в силовом поле. Эта аналогия настолько значительна, что при рассмотрении движения электронов в электрическом поле удобно применять уравнения, определяющие прохождение света сквозь среды с различными оптическими характеристиками. Так например, оптический закон преломления

,

г де и – углы, образуемые падающим ( ) и преломленным ( ) лучами с нормалью к границе раздела двух сред, имеющих показатели преломления n и n , справедлив также для электронного луча, проходящего из области потенциала U1 в область потенциала U2.

При движении электрона через границу двух сред с различными потенциалами (рис. 4.1) составляющая скорости, параллельная поверхности раздела, остается без изменения, а составляющая, перпендикулярная этой поверхности, изменяется по величине (увеличивается при U2 > U1 ).

Равенство составляющих скоростей y1 и у2 можно записать в виде 1 sin = 2 sin. Если электрон влетает в область потенциала U1 c нулевой начальной скоростью, то, учитывая, что скорость определяется величиной электрического поля, можно записать:

;

Подставляя эти значения скоростей в предыдущее уравнение, получаем

;

Из этого выражения следует, что при переходе электрона в среду с более высоким потенциалом угол отклонения его от нормали уменьшается, в противном случае электрон удаляется от нормали. При этом роль показателя преломления играет величина .

Таким образом, рассматривая поверхности равного потенциала как преломляющие поверхности оптической среды, можно, используя законы световой оптики, найти траектории электронов в электрических полях.

Расчет электрических полей, используемых для формирования, фокусировки и отклонения электронных пучков, сводится к нахождению распределения потенциала в функции координат.

В электронно-лучевых приборах для фокусировки электронных пучков служат электрические и магнитные поля, обладающие симметрией тел вращения.

Движение заряженных частиц в таких полях аналогично распространению света сквозь линзы. Любое неоднородное электрическое или магнитное поле, обладающее осевой симметрией, в приосевой области обладает свойствами электронной линзы.

В электронной оптике различают линзы – диафрагмы, одиночные линзы, иммерсионные линзы, иммерсионные объективы, электронные зеркала, магнитные линзы, квадрупольные линзы и др.

Что будет с параллельным пучком электронов, если он будет проходить из области с U1 в область с U2 и граничная поверхность сферическая (рис. 4.2).

Рис. 4.2 – Фокусировка электронов

При U2> U1 , когда 1 >2, электрон пересечет ось в точке F, это фокусная точка.

Поле в этом случае обладает собирающим действием. Величину фокусного расстояния f легко найти, если d мало, электрон лежит недалеко от оси, 1 и 2 – небольшие:

Фокусное расстояние не зависит от d, т.е. электроны всего пучка собираются в одной точке (фокусе).

Аналогично для U2< U1 пучок рассеивается на границе.

Эти поля образуют электронные линзы. В практике таких линз нет. Обычно не бывает таких резких скачков потенциалов. Однако и при плавном изменении поля будет плавное изменение скорости и направления электронов.

Электронная линза состоит из двух цилиндров или двух диафрагм с разными U1 и U2 (рис. 4.3).

U1 U2


1

2


Рис. 4.3 – Электронная линза

Тонкие линии – это эквипотенциальные поверхности. Выпуклость внутрь цилиндра.

Допустим U2> U1. В цилиндре 2 потенциал по мере удаления от оси увеличивается и точка с тем же потенциалом располагается ближе к цилиндру 1. Аналогично и в цилиндре 1.

При U2< U1 будет то же самое. Надо перевернуть рисунок, но он симметричный.

Для U2> U1 траектория электронов показана штриховой линией. Все электроны в месте стыка цилиндров будут направлены к оси. В цилиндре 2 они встречают рассеивающее поле, и электрон будет удаляться от оси.

При любом соотношении потенциалов линза  собирающая. Преобладает собирающее поле над рассеивающим, ибо электрон первое поле проходит с меньшей скоростью, большее время подвергается действию электрического поля и сильнее отклоняется, чем во втором. Собирающее действие иммерсионной линзы (f) зависит от .

Иммерсионная линза

У иммерсионной электронной линзы электронно-оптические показатели преломления и потенциалы справа и слева от линзы постоянны, но не равны.

Такая линза может быть образована двумя диафрагмами с разными потенциалами (рис. 4.4, а), комбинацией (рис. 4.4, б) диафрагмы и цилиндра или двумя цилиндрами (рис. 4.4, в).

В
о всех случаях между электродами, образующими линзу и имеющими различные потенциалы U1 и U2, образуется аксиально-симметричное поле, являющееся электронной линзой. Рассмотрим иммерсионную линзу, состоящую из двух цилиндров и U2> U1 (рис. 4.5).



Характер изменения потенциала по оси симметрии линзы представлен на рис 4.5.

Видно, что с оптической точки зрения поле линзы состоит из двух частей – собирающей, в области цилиндра с потенциалом U , и рассеивающей, в области цилиндра с потенциалом U . Результирующее же действие иммерсионной линзы всегда собирающее, потому что электроны проходят собирающую область поля линзы с меньшими скоростями, чем рассеивающую.

Общие свойства иммерсионных линз:

  1. Иммерсионные линзы всегда собирающие;

  2. Они несимметричны, т.е. их фокусные расстояния f и f неравны и относятся как

.

  1. Иммерсионная линза, создавая электронное изображение, должна изменять энергию создающего это изображение электронного пучка.

Одиночная линза

Под одиночной линзой в электронной оптике понимается область аксиально-симметричного электрического поля, у которого электронно-оптические показатели преломления, а следовательно, и потенциалы справа и слева от линзы постоянны и равны между собой. Одиночная линза может быть образована различными комбинациями из трех, а иногда и из двух коаксиальных электродов (цилиндров, диафрагм). Потенциалы крайних электродов линзы равны.

Характеристики

Тип файла
Документ
Размер
2,63 Mb
Тип материала
Высшее учебное заведение

Список файлов книги

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6455
Авторов
на СтудИзбе
305
Средний доход
с одного платного файла
Обучение Подробнее