zlobina_af01 (519754), страница 6
Текст из файла (страница 6)
Этим условиям удовлетворяют примесные полупроводники.
2.11 Вторичная эмиссия
Выбивание электронов из кристалла при бомбардировке его пучком первичных электронов называют вторичной эмиссией. Первичный электрон движется в кристалле и отдает свою энергию по пути многим электронам в кристалле. Причем основную долю энергии первичный электрон отдает в конце пути. Энергетический спектр вторичных электронов сложен. Чисто вторичные электроны имеют энергию порядка 50 эВ, есть доля отраженных первичных электронов, имеющих энергию первичных электронов.
Число вторичных электронов ( ) пропорционально для данного кристалла числу первичных электронов (
). Можно записать:
где – коэффициент вторичной эмиссии.
показывает, сколько вторичных электронов приходится на один первичный электрон.
Коэффициент вторичной эмиссии зависит от энергии первичных электронов (рис. 2.16).
1
500 эВ Е, эВ
Рис. 2.16 – Зависимость от энергии первичных электронов
Для вторичной электронной эмиссии важны два элементарных процесса: 1) движение первичных электронов в материале эмиттера, сопровождающееся передачей энергии вторичным электронам; 2) движение вторичных электронов, сопровождающееся потерей энергии при столкновении с другими электронами. Эти факторы и объясняют зависимость коэффициента вторичной эмиссии от энергии первичных электронов. С одной стороны, в результате увеличения энергии первичных электронов в эмиттере растет число вторичных электронов, создаваемых каждым первичным электроном. В этом случае растет коэффициент вторичной эмиссии.С другой стороны, проникающий в эмиттер первичный электрон на первых этапах своего пути обладает большой скоростью и редко передает энергию электронам эмиттера. По мере торможения первичного электрона в эмиттере основную часть своей энергии он отдает электронам эмиттера в конце пути. Чем больше энергия первичных электронов, тем глубже они проникают в эмиттер. Выход вторичных электронов затрудняется, т.к. возрастают их энергетические потери в пути из эмиттера. Это ведет к уменьшению коэффициента вторичной эмиссии.
Р
аспределение вторичных электронов по энергиям представлено на рис. 2.17.
Широкий пик, максимум которого приходится на энергию порядка 20 эВ, соответствует истинно вторичным электронам. Этот пик не зависит от энергии первичных электронов. Узкий пик, соответствующий энергии первичных электронов ( ~ 200 эВ), показывает упруго отраженные от эмиттера первичные электроны. При изменении энергии первичных электронов узкий пик соответственно перемещается.
Особенностью вторичной эмиссии является то, что коэффициент вторичной эмиссии не зависит от эффективной работы выхода эмиттера. Это связано с тем, что за счет большой энергии первичных электронов энергия вторичных электронов значительно больше эффективной работы выхода любого материала.
Зависимость коэффициента от энергии первичных электронов у диэлектриков и полупроводников качественно такая же, как и у металлов. Однако у диэлектриков и полупроводников значительно выше. При этом из-за плохой проводимости диэлектрика или полупроводника на поверхности кристалла под действием первичных электронов формируется заряд, который существенно изменяет процессы взаимодействия первичных электронов с кристаллом.
Допустим, что материал кристалла – диэлектрик, при этом < 1.
В этом случае на поверхность кристалла электронов приходит больше, чем уходит за счет вторичных. Избыточные заряды не могут уйти в объем диэлектрика и в цепь, поверхность кристалла заряжается отрицательно. На поверхности кристалла формируется тормозящее поле. Это ведет к уменьшению . Происходит дальнейшее накопление отрицательного заряда на поверхности кристалла и т.д.
Это будет продолжаться до тех пор, пока потенциал поверхности не достигнет потенциала катода и не прекратятся и первичный и вторичный токи.
Допустим теперь, что >1, т.е. с поверхности диэлектрика уходит электронов больше, чем приходит, и поверхность заряжается положительно. Возникает ускоряющее поле, энергия первичных электронов увеличивается. Накопление заряда на поверхности будет происходить до тех пор, пока =1. Это означает, что при = 1 наступает установившийся режим.
У полупроводниковых кристаллов эффект зарядки поверхности выражен слабее из-за значительной проводимости.
2.12 Вторичная ионно-электронная эмиссия
Вторичная эмиссия может происходить не только под действием электронной бомбардировки кристалла, но и при бомбардировке его положительными ионами. Такая эмиссия называется ионно-электронной.
Коэффициент ионно-электронной эмиссии представляет отношение вторичного электронного тока Ie2 к ионному току (Ii ), зависит от материала кристалла, рода бомбардирующих ионов и их кинетической энергии. При энергиях порядка десятков и сотен электронвольт значения лежат в пределах 10–310–1. С увеличением энергии ионов этот коэффициент возрастает и при энергиях в несколько тысяч электронвольт может стать больше единицы.
Эксперименты показывают, что существуют два разных процесса выбивания вторичных электронов ионами. Выбивание электронов ионами за счет кинетической энергии последних называется кинетическим вырыванием. Вырывание электронов ионами за счет энергии, высвобождающейся при рекомбинации на поверхности кристалла или вблизи ее, называют потенциальным вырыванием.
Кинетическое вырывание: при столкновении иона с атомом кристалла происходит «встряска» их электронных оболочек, в результате которой может освободиться электрон с достаточно большой для преодоления потенциального барьера энергией, или это результат ионизации поверхностного слоя атомов кристалла ударами ионов.
При потенциальном вырывании положительный ион подходит к поверхности кристалла, при этом потенциальный барьер между ними будет снижаться и сужаться, и станет возможным переход одного из наиболее быстрых валентных электронов кристалла к иону.
Вторичная ионно-электронная эмиссия наблюдается в условиях электрического разряда в газах.
3 ТОКОПРОХОЖДЕНИЕ В ВАКУУМЕ
3.1 Движение электронов в вакууме в электрическом и магнитных полях
В электрическом поле напряженностью Е на электрон действует сила , противоположная по направлению вектору Е.
В магнитном поле с индукцией В на движущийся электрон действует сила Лоренца. При произвольной ориентации векторов эту силу удобно представить в векторной форме:
где – вектор скорости электрона.
При наличии электрического и магнитного полей действующая на электрон сила:
Поскольку при движении в вакууме электрон не испытывает столкновений, приводящих к изменению величины и направления его скорости, получаем уравнение движения электрона
Это уравнение позволяет полностью описать движение электрона, найти его траекторию и скорость в любой точке, если известны начальные условия: координаты, величина и направление скорости в начале пути и, главное, если известна картина поля, т.е. заданы в виде функции координат векторы напряженности электрического поля и магнитной индукции
.
Нахождение картины поля является первым этапом решения задач о движении электронов в межэлектродном пространстве.
Аналитически картину электрического поля в пространстве, свободном от зарядов, можно найти решением уравнения Лапласа:
Это для случая малых потоков или единичных электронов.
В случаях, когда электроны и другие заряженные частицы находятся в межэлектродном пространстве в большом количестве и влияют на картину электрического поля, в основу расчета должно быть положено уравнение Пуассона:
где – плотность объемного заряда;
– диэлектрическая проницаемость.
Однако картины электрического поля аналитическим путем можно найти для простых конфигураций электродов, а для сложных электродов используют эксперимент (электрическая ванна, метод сеток, метод сопротивлений) или приближенные методы расчета.
Картину магнитного поля также можно получить аналитически только для простейших случаев.
Вернемся к уравнению:
Умножив левую и правую части скалярно на скорость электрона , получим
Второе слагаемое равено нулю потому, что сила Лоренца перпендикулярна направлению движения электрона.
Выясняется, что под действием магнитного поля изменяется только направление движения электрона, а его скорость не меняется по величине.
Электрическое поле влияет на кинетическую энергию и на направление движения.
Уравнение, связывающее энергию свободного электрона с пройденной разностью потенциалов U:
Если начальную энергию электрона охарактеризовать некоторой разностью потенциалов U0 , т.е. выразить ее в электрон-вольтах, то скорость электрона, прошедшего разность потенциалов U,
Напомним, что при скоростях электрона, близких к скорости света, во всех приведенных уравнениях должна быть релятивистская масса электрона. Однако, как показывает расчет, релятивистский эффект учитывается только при анализе движения электрона, ускоряемого разностью потенциалов в несколько десятков киловольт. Поэтому далее будем считать массу электрона постоянной.
3.2 Движение электрона в однородном электрическом поле
Электроды плоскопараллельны на расстоянии d один от другого (рис. 3.1).
Уравнение Лапласа, имеющее вид , после интегрирования сводится к уравнению