zlobina_af01 (519754), страница 3
Текст из файла (страница 3)
Сблизим атомы (а=Х). Слева цепочка идет за пределы рисунка, справа кончается. Теперь, как показано пунктиром на рис. 2.5, воронки атомов перекрываются. То есть электрон среднего атома испытывает притяжение не только к своему ядру, но и к соседнему. Теперь все электроны кристалла можно разделить на 2 группы:
1) электроны внутренних оболочек атомов, которые и после сближения находятся в глубоких потенциальных ямах. Электроны этой группы сильно связаны и локализуются около ядер своих атомов;
2) валентные электроны (3S). Видно, что уровень их энергии выше потенциальной энергии внутри кристалла. Валентные электроны, по сути дела, могут беспрепятственно перемещаться по всему кристаллу. Их называют свободными. Однако на границе цепочки кривая потенциальной энергии поднимается, образуя высокий барьер, т.е. электроны свободны только внутри кристалла.
Рис. 2.5 – Энергия электронов в кристалле
Может возникнуть предположение, что теперь у одного из атомов может быть два или больше валентных электронов с одной энергией, т.е. как бы нарушается закон Паули. Однако это противоречие снимается изменением энергетического состояния электрона из-за перекрытия волновых функций электронов. Возьмем принцип неопределенности Гейзенберга, который через энергию выражается как
где – время пребывания электрона в энергетическом состоянии от до , h – постоянная Планка.
В изолированном атоме электрон может находиться сколь угодно долго ( ) на своем энергетическом уровне.
В кристалле валентный электрон движется со скоростью 105 м/с, а размеры атома примерно 1010 м, поэтому время пребывания в зоне атома примерно 1015 с. Можно сделать вывод, что энергетический уровень валентных электронов в кристалле вырождается из линии в зону, ширина которой может быть определена как
Итак, при объединении атомов происходит расщепление энергетических уровней в зоны. И не только для валентных электронов, но для всех более высокоэнергетических. Так как определяется размерами кристаллической решетки, ширина энергетической зоны не зависит от размеров кристалла, а зависит от природы кристалла (рода атома, постоянной решетки).
Уровни электронов, лежащих в потенциальной яме, также расщепляются, т.к. не исключена возможность тунелирования и волновые функции этих электронов распространяются в других атомах. Чем ближе к ядру, тем меньше расщепление и их можно считать вырожденными. В атоме линия – 1S , в кристалле зона – 1S и т.д. (рис. 2.6).
Высокая ( 1028 м3) концентрация атомов в кристалле при эВ определяет настолько малое расстояние между подуровнями, что спектр энергий электронов в пределах зоны можно считать практически непрерывным.
Поведение электронов в заполненной и незаполненной энергетических зонах различается.
В заполненной энергетической зоне отсутствуют энергетически свободные уровни, и электроны не могут в пределах этой зоны изменять свое энергетическое состояние.
Рис. 2.6 – Зонная структура кристалла. Между энергетическими
зонами – зоны запрещенные
В незаполненной энергетической зоне имеются свободные (разрешенные) уровни, т.е. электроны способны при малейшем воздействии на них изменять свою энергию.
Если на кристалл наложить электрическое поле, то электроны в заполненной зоне не могут изменять свою энергию и состояние электронов не изменяется.
Если энергетическая зона заполнена не полностью, то возможен переход электронов под действием поля на более высокие энергетические уровни, а следовательно, движение электронов, т.е. электропроводимость.
На основе таких представлений зонная теория объясняет деление твердых тел на проводники, полупроводники и диэлектрики.
2.3 Электрические свойства кристаллов
Для простоты будем изображать только валентную зону (косая штриховка), запрещенную зону над ней (без штриховки) и зону проводимости (горизонтальная штриховка).
Различают 2 группы заполнения электронами энергетических зон.
Первая группа характеризуется неполным заполнением верхней из разрешенных зон, содержащих электроны. Нa уровне 3S вместо двух электронов находится один. При объединении в кристалл формируется зона проводимости, которая примыкает к валентной зоне проводимости (рис. 2.7, а).
В
о второй группе энергетические уровни полностью заполнены. Валентная зона отделена от зоны проводимости широкой запрещенной зоной (рис. 2.7, в).
Если запрещенная зона узкая (0,51,2 эВ) – это собственные полупроводники (рис. 2.7, б).
Если запрещенная зона широкая (45 эВ) – это диэлектрики (рис. 2.7, в).
Увеличение импульса электронов вдоль какого-либо направления связано с возрастанием их энергии и переходом на более высокие энергетические уровни. Однако в кристаллах (диэлектриках) невозможен переход электронов на более высокие уровни за счет электрического поля, поскольку свободная и заполненная разрешенные зоны разделены запрещенной зоной, ширина которой много больше энергии, приобретаемой электроном на длине волны . Действительно, 108 м, и в поле напряженностью 104 В/м он приобретает энергию 104 эВ, а ширина запрещенной зоны 5 эВ. Таким образом, направленное движение носителей заряда в кристаллах с целиком заполненными зонами невозможно. Это изоляторы.
Электроны частично заполненных зон в силу квазинепрерывности зон могут увеличивать энергию и участвовать в направленном движении под действием сколь угодно слабых полей. Это проводники.
Собственные и примесные полупроводники
Чистый полупроводник, в котором отсутствуют примеси, называется собственным полупроводником. Однако практически создать решетку без примесей невозможно. В реальных кристаллах правильность структуры нарушается за счет всевозможных дефектов, поэтому собственные полупроводники в чистом виде встречаются редко. Чаще всего имеем дело с примесными полупроводниками. В решетке присутствуют или примеси, или дефекты.
Основная зонная диаграмма не меняется, только дополнительно возникают локальные состояния электронов и локальные энергетические уровни (примесные уровни), попадая на которые электроны не перемещаются по кристаллу, а сосредотачиваются вблизи дефекта. Эти примесные уровни обычно изображаются черточками. Когда примесей много, могут образовываться примесные зоны.
Рис. 2.8 – Донорный полупроводник:
а) образование донорного электрона; б) энергетическая диаграмма
В зависимости от типа примесных атомов и вещества основного кристалла различают два вида примесных полупроводников. Проследим образование их. Допустим, что в четырехвалентную решетку германия вносятся атомы мышьяка – As (рис. 2.8).
Каждый атом германия связан с четырьмя ближайшими соседями силами ковалентной связи и выделяет на установление каждой связи по одному из четырех валентных электронов. Замещение одного атома германия пятивалентным атомом As приводит к тому, что один электрон не будет участвовать в установлении ковалентной связи, а останется на эллиптической орбите вокруг примесного иона, охватывая своим движением несколько атомов решетки. Теперь достаточно сообщить электрону As энергию порядка 0,01 эВ, чтобы оторвать его от атома и превратить в свободный электрон, участвующий в электропроводности.
С точки зрения зонной теории, атому As соответствует появление локального энергетического уровня, расположенного в запрещенной зоне примерно на 0,01 эВ ниже зоны проводимости (рис. 2.8, б). Примесные уровни As заполнены электронами, которые под действием внешнего возбуждения могут перейти в зону проводимости. Такие примесные уровни, передающие электроны в зону проводимости, называются донорными уровнями, а полупроводник – донорным ( полупроводник п-типа).
Рис. 2.9 – Акцепторный полупроводник:
а) образование незавершенной связи; б) энергетическая диаграмма
Введение в четырехатомную решетку германия трехвалентного индия создает другой тип полупроводника. Три валентных электрона не могут обеспечить ковалентные связи с четырьмя атомами германия, и одна связь остается незаполненной. Однако один электрон может перейти в эту связь, а на его место другой соседний и т.д. Следовательно, вакансия электронов подвижна и может передвигаться по решетке. На зонной диаграмме (рис.2.9, б) примесь индия приводит к появлению локальных незаполненных уровней вблизи валентной зоны (0,01 эВ), на которые могут перейти электроны под действием внешнего возбуждения, причем в валентной зоне образуются дырки, обеспечивающие механизм электропроводности. Подобные уровни – акцепторные, а полупроводники – дырочные, или р-типа.
Захватывая электрон валентной зоны, атом акцепторной примеси превращается в отрицательный ион. Перемещаться в кристалле под действием электрического поля он не может, так как прочно удерживается в узле кристаллической решетки ковалентными связями с другими атоматами.
2.4 Плотность энергетических уровней
Для того чтобы знать, как распределяются по энергиям электроны в кристалле, надо установить, как распределены внутри зон разрешенные квантовые состояния, а во-вторых, как они заполняются электронами, т.е. вероятность их заполнения.
Концентрацию электронов, имеющих энергии, заключенные в интервале от Е до Е+dЕ, можно представить так:
где – функция плотности энергетических состояний;
– вероятность заполнения энергетических уровней зарядоносите-
лями.
где – энергия электрона, отсчитанная от границы зоны;
– эффективная масса электрона, учитывающая энергетическую
связь его с полями частиц кристалла;
– элементарная ячейка пространства импульсов.