Главная » Просмотр файлов » Феер К. Беспроводная цифровая связь (2000)

Феер К. Беспроводная цифровая связь (2000) (1151861), страница 44

Файл №1151861 Феер К. Беспроводная цифровая связь (2000) (Феер К. Беспроводная цифровая связь (2000)) 44 страницаФеер К. Беспроводная цифровая связь (2000) (1151861) страница 442019-07-07СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 44)

(4.9.4) Если все составляющие межсимвольных искажений в момент дискретизации суммируются в фазе, то получается максимальное отклонение от полезного сигнала (94] Задача корректора, включаемого в тракт приема сигнала — максиУз мально уменьшить межсимвольные искажения, чтобы максимизировать вероятность правильного решения 4.9.1.

Линейный трансаеосальный корректор и корректор с алгоритмом адаптации по критерию минимальной среднекаадратической ошибки Среди многих структур, используемых дпя коррекции, наиболее простым является трансверсальный корректор (известныи также как корректор в виде линии задержки с отводами) (рис. 4.9.4) В таком ,(-,: корректоре текущее и предыдущие значения г(1 — пТ) принимаемого сигнала линеино взвешиваются коэффициентами корректора с„(усиление отводов) и суммируются для получения выходного сигнала Если линии задержки и умножители на коэффициенты аналоговые, то непрерывный выходнои сигнал корректора з(1) дискретизируется с частотои ';я следования символов и отсчеты подаются на решающее устройство.

В :;:::.. широко используемой цифровой реализации отсчеты принимаемого сигнала, поступающие с час~отой следования символов, накапливаются в цифровом регистре сдвига (или памяти), и отсчеты с выхода корректора (сумма произведений) з(19 + ЕТ), или зе, вычисляются по одному на символ в соответствии с выражением Вхолнав последовательно г(С) со последовательность 6Е(гг) 6с.(1) 6 г — = 2еьг(1о + ~Т вЂ” т1Т). 6с„(Я) Рис. 4.9.4.

Линеаныв трзнсаерсальный «орректор (94) где Ж вЂ” количество коэффициентов корректора; 1о — начало отсчетов. Коэффициенты корректора с„„п = О, 1,, Ж вЂ” 1, выбираются так, чтобы отсчеты общеи импульсной характеристики канала и корректора стали равными нулю везде, кроме одного из Й моментов из интервала времени АгТ, равного впамяти» корректора. Такои корректор называется корректором с приведением к нулю (ПН-корректором). Корректор с алгоритмам адаптации па критерию минимальной срвднекввдрвтнчвской ошибки (МСКО-корректор) более устойчив. Его коэффициенты подбираются так, чтобы минимизировать среднеквадратическую ошибку (СКО) — сумму квадратов всех составляющих межсимвольных искажении и шума на выходе корректора Следовательно, МСКО-корректор максимизирует отношение сигнал/искажения на выходе согласно ограничениям по объему памяти и задержки корректора.

Задержка, вносимая корректором, зависит от положения главного (опорного) отвода корректора. Обычно усиление, соответствующее главному отводу, максимально Если значения импульсной характеристики канала в моменты отсчета известны, та значения гу коэффициентов ПН-корректора и МСКО корректора можно получить совместным решением системы г4 линейных уравнений для каждого случая. большинства современных высокоскоростных модемов, работающих в каналах тональной частоты, используют МСКО-корректоры, поскольку они более устойчивы в присутствии шумов и сильных межсимвольных искажении и превосходят ПН. корректоры па скорости сходи- мости Эта также оказывается справедливым и для корректоров.

работающих в радиоканалах 4.9.2. Автсматический синтез В течение интервала обучения передается известныи сигнал, а в приемнике формируется его синхронизированная версия для получения информации а характеристиках канала. Обучающий сигнал может состоять из периодических изолированных импульсов ипи из непрерывной Ошибка Рис. 4.9.5. Аетоыатическив адаптивный корректор (94) ::„:;,последовательности с широким равномерным спектром типа такой, как .!:.ширака используемая псевдослучайная последовательность (последова.

!:;:,:тельность максимальной длины регистра сдвига). Имея синхронизированную версию известного обучающего сигнала, ;:;.'можно вычислить последовательность сигнала ошибки ее = те — ке ,'; на выходе корректора, чтобы минимизировать сумму квадратов ошибок ,':";:(рис 4 9 5) Наиболее распространенный метод подстроики корректо<'." ра состоит в обновлении весовых коэффициентов каждого отвода на ,:,:, каждом символьном интервале. Возможна итеративная процедура на(! хождения коэффициентов корректора, поскольку СКΠ— квадратичная ,"-'. функция коэффициентов. СКО может рассматриваться как 1т"-мерный ::;: —;; параболаид (чаша), имеющий минимум. Корректировка весовых коэф:..":.

фициентов для каждого отвода производится в направлении, противо.".:положном оценке градиента СКО по весовым коэффициентам. Идея в том, чтобы установить значения коэффициентов корректора наибо,-', .лее близкими к оптимальным, дпя которых достигается минимум СКО. Эта пошаговая процедура, разработанная Уидроу и Хоффом, обычно называется методом стохастического градиента, поскольку вместо истинного градиента СКО используется зашумленная, но несмещенная оценка Таким образом, весовые коэффициенты отводов обновляются в соответствии с выражением С„(1с+ 1) =.

«з(1) — Г1еег(1+ 1сТ вЂ” пТ), и .=- О, 1, ... Рг' — 1. где с„(1г) — значение весового коэффициента и-га отвода в Бый момент; еь — сигнал ошибки, тз — положительный постоянный коэффициент адаптации, или размер шага 259 Входной *игна 4.9.3. Сходимооть корректора Обучающии сигнал 4.9.4. Адаптианая коррекция 281 Строгий анализ процесса адаптации при стохастическом методе обновления выполнить трудно. Однако при малом размере шага и Большом числе итерации процесс похож на работу алгоритма «наискорей шега спускаа, в котором используется истинный градиент, а не ега зашумленная оценка. Отметим следующие общие свойства сходимости.

1 Максимальная скорость схадимости (или самое короткое время адаптации) получается, когда энергетический спектр (свернутыи) входного сигнала, дискретизированного с символьной частотой, равномерный, а размер шага — выбран обратно пропорциональным произведению мощности принимаемого сигнала на количество коэффициентов корректора. 2. Чем больше отклонение свернутого энергетического спектра от равномерного, тем меньше должен быть размер шага и, следовательно, меньше скорость сходимасти 3 Для систем, в которых при дискретизации происходит наложение (эаворачивание) частотной характеристики канала (наложение спектров), на скорость сходимости могут повлиять характеристики задержки канала и фаза дискретизатора, поскольку они влияют на характер наложения.

Это влияние будет объяснено ниже более подробно. После периода первоначального обучения (если он один) коэффициенты адаптивного корректора могут неоднократно подстраиваться в соответствии с принимаемыми решениями. В этом режиме сигнал ошибки ее = зь — еь получится с помощью последней (но не обязательно правильной) сделанной в приемнике оценки (хь) переданнои последствательности (еь). при нормальной раБоте решения, сделанные в приемнике, с высокой вероятностью являются безошибочными, поэтому оценки сигналов ошибки довольно часто являются истинными и позволяют адаптивному корректору обеспечивать точную коррекцию.

Более того, адаптивныи корректор со связью по принимаемым решениям моткет отслеживать во входных цепях приемника медленные изменения характеристик канала или линейные возмущения типа медленного дрожания фазы сигнала дискретизации (94) Чем больше размер шага, тем выше Быстродействие корректора при слежении Однако, нужно устанавливать компромисс между высоким быстродействием и увеличением СКО корректора.

Увеличение СКО— это часть мощности ошибки, превышающая минимально достижимую СКО (при значениях весовых коэффициентов, равных оптимальным) Это увеличение СКО, вьшванное отклонением значений весовых коэффициентов ат оптимальных, прямо пропорционально количеству коэффициентов корректора, размеру шага и мощности шума канала Размер шага, обеспечивающий самую высокую скорость сходимасти, дает СКО, р 4 Э 6. Корректор с обратной сакзью по РешениЯм [Я4) которая в среднем на 3 дб выше минимально дастижимои На практике размер шага выбирается исходя из максимальнои скорости схадимости на интервале обучения, а затем уменьшается для точнои подстройки в установившемся регкиме (приеме данных).

На рис. 4.9.6 приведена часто используемая схема корректора с обратнои связью по решениям, пригодная для реализации автоматического адаптивного корректора В следующем примере сравниваются характеристики цифравьсх со.'лг тавых систем с адаптивным корректором и Без него Пример 4.8.1. Измеренное аременное рассеяние для одного из районоа СанФранциско, КалиФорния, составляет около 1б мкс. Определить значение аероятности осиибки, соответствующее плоскому участку характеристики а системах г/4-бсР5К и к/4-ООРЯК без коррекции, если мощность задержанного сигнала О равна мощности основного сигнала С, г е. С/Д = О дБ, скорость передачи /ь = 48,б кбит/с (стандартизованная скорость для американской сотовой системы 84ДВРК Гб 54).

Насколько снизится зто значение при икпользоаании современного адаптивного корректора 7 Реппсиие примера 4.9.1 Во-пераых, определим отноцсение = — — — = 0.388 = 0,4. Т, 1//, 1/(48,6 . 2 кбит/с) 41,15 мкс Из рис 4 б 8 получаем, что при т/Т, = 0.4 и Г/О =- О дБ значение аероят. ности ошибки, соотаетстаующее плоскому участку характеристики, разно 10 как при когерентной, так и некогерентной демодуляции -с Применение соаременнмх адаптианых корректороа снизит зто значение до 10 Опорный сигнзл дные Сигнал синхро ы* Сигн 263 262 4.10. Синхронизация демодуляторов, работающих в пакетном режиме: восстановление несущей и тактовой частоты Для многих беспроводных систем требуется быстрая синхронизация в пакетном режиме передачи Схемы быстрого восстановления несущеи и тактовой частоты определены для систем с многостанционным доступом на основе временного разделения каналов (МДВРК), на основе кодового разделения каналов (МДКРК) и с контролем конфликтов (МДКК) В аз.

Характеристики

Список файлов книги

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6461
Авторов
на СтудИзбе
304
Средний доход
с одного платного файла
Обучение Подробнее