Главная » Просмотр файлов » Диссертация

Диссертация (1151153), страница 17

Файл №1151153 Диссертация (Подсистема поддержки принятия решений для планирования социальных выплат информационной системы типа электронный социальный регистр населения) 17 страницаДиссертация (1151153) страница 172019-06-29СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 17)

Семейство возможных вероятностных моделей – это неоднородные повремени пуассоновские процессы. Неопределенность вероятностной моделизаключается в том, что нам не известна конфигурация траектории накопленной помесяцам интенсивности процесса ((1/ 12); 1/ 12), ((2 / 12); 2 / 12),, ((1); 1) .Мы основываемся на понятии случайного процесса как функции от двухпеременных – случая    (элемента множества случайных событий) и времениt  R : (t )  (t, ) . При фиксированном случае получаем некоторую функцию отвремени (траекторию). При фиксированном моменте времени – случайнуювеличину. Мы рассматриваем траекторию накопленной по месяцам одного годаинтенсивности как реализацию случайного процесса при фиксированном случае.91На основе имеющихся 22 траекторий, образующих случайную выборкуоцениваемой вероятностной модели, строим оценку конфигурации накопленнойинтенсивности (ˆ (1 / 12); 1 / 12), (ˆ (2 / 12); 2 / 12),, (ˆ (1); 1) .

Накопленная на конец годаинтенсивность фиксируется на основе прогноза для годовых показателейинтенсивности. Бутстрэп-траектория строится при помощи стандартного методамоделированиянеоднородногопуассоновскогопроцесса.Наоснованииполученных траекторий строится коридор прогноза (Рис. 2, пунктир) путемвычисления процентилей (или размаха) наколенной интенсивности за каждыймесяц. Сходимость обеспечивается автоматически за счет использования моделинеоднородногопуассоновскогопроцесса,конфигурацией накопленной интенсивности.однозначноопределяемогоГЛАВА3.ПРИМЕНЕНИЕСОСТАВЛЕНИЯМЕТОДОВТРЕХВАРИАНТНОГОИАЛГОРИТМОВПРОГНОЗАДЛЯСОЦИАЛЬНО-ДЕМОГРАФИЧЕСКОЙ СТРУКТУРЫ НАСЕЛЕНИЯ РЕГИОНА3.1.

Анализ и прогнозирование рождаемостиРасчеты произведены для трех субъектов РФ: Вологодской области,Тюменской области и Кабардино-Балкарской республики. Регионы выбраны поразмеру валового регионального продукта на душу населения: близкого ксреднему, максимуму и минимуму по РФ, а также наличию необходимыхстатистических данных в базе Росстата.

Основные графики построены дляВологодской области. В качестве исходных данных использовано количествоноворожденных на 1000 женщин репродуктивного возраста за календарный год.Рассмотрим исходные данные (Рис. 4, графики для других регионовпредставлены в Приложении 2). На графике видно несколько «переломов»тенденции. Для перехода от абсолютных приращений к относительнымпроизведено логарифмирование.Рисунок 4 – Показатель числа новорожденных на 1000 женщин репродуктивноговозраста по годам, Вологодская область93Рисунок 5 – Логарифм числа новорожденных на 1000 женщин репродуктивноговозраста по годам, Вологодская областьСудя по графику, ряд не стационарен.

Используется предположение оналичии тенденции рождаемости. Методы сглаживания при помощи скользящегоокна и скользящего среднего при данной длине ряда не годятся. Тенденция явнонелинейная, поэтому для первого приближения использован полиномиальныйтренд. Также построены различные варианты сплайновой регрессии, как основноеобобщение и альтернатива полиномиальной регрессии.

Основное преимуществосплайновой регрессии – возможность выбора большего количества параметров взависимости от данных, а также возможность получения более точногоприближения при меньшей степени полинома.Аппроксимация сплайнами. Для аппроксимации тенденции рождаемостииспользован метод сплайновой регрессии на основе базисных сплайнов третьегопорядка. Для обоснования выбора внутренних узлов, соответствующих моментамреакциинаважныесоциально-экономическиесобытия,предварительнорассмотрены различные варианты сетки узлов.

В применяемой для расчетовфункции «bs()»6 пакета «R» по умолчанию для левого граничного узла6B-Spline Basis for Polynomial Splines.94используется граничное условие равенства нулю второй производной. Дляправого – условие отсутствия узла. Поскольку точной информации о поведениипроизводной аппроксимируемой функции в граничных узлах у нас нет, то такиеусловия приемлемы.Сплайн №1. Это кубический сплайн без внутренних узлов разбиения сграничными узлами в 1990 и 2010 годах. По сути, имеет место приближениеполиномом третьей степени.Сплайн №14.14Логарифм числа детей3.93.83.73.63.5201020082006200420022000199819961994199219903.4ГодРисунок 6 – Сплайн-аппроксимация кубическим полиномомМодель имеет значимые коэффициенты и близкую к нулюp -статистику.Рассмотрим другие варианты.Сплайн №2.

Задана одна точка разбиения, соответствующая 1999 году,когда рождаемость достигла своего минимума после пика кризиса 1998 года. Длядругого варианта задано число степеней свободы 4 (в этом случае использованаквантиль 50%, соответствующая 2000 году). Тонкий пунктир – сплайн с точкойразбиения по квантили, толстый пунктир – сплайн с точкой разбиения в 1999году. Как видно, добавление одной точки разбиения практически не улучшилоситуацию в плане среднеквадратичного отклонения, зато последнее наблюдениелучше легло на линию регрессии.95Сплайн №24.1Логарифм числа детей43.93.83.73.63.5201020082006200420022000199819961994199219903.4ГодРисунок 7 – Сплайн-аппроксимация кубическим полиномом с одним внутреннимузломСплайн №3.

Добавлены еще две точки разбиения по квантилям: 25%, 50%и 75%, им соответствуют 1995, 2000, 2005 годы, а также внутренние узлы пособытиям в 1993 (последствия либерализации цен), 1999 (последствия дефолта) и2007 (ввод материнского капитала) годах.Тонкий пунктир – сплайн с точками разбиения по квантили, толстыйпунктир – по событиям. Сумма квадратов ошибок: 0,0324 для сплайна,построенного по квантилям, и 0,0336 для сплайна, построенного по важнымсоциально-экономическим событиям.96Сплайн №34.1Логарифм числа детей43.93.83.73.63.5201020082006200420022000199819961994199219903.4ГодРисунок 8 – Сплайн-аппроксимация кубическим полиномом с тремявнутренними узламиДобавление новых узлов дает положительный эффект аппроксимации наконцах, но не уменьшает среднеквадратичное отклонение модели. Удалениевыброса (замена на среднее), связанного с кризисом 1998 года не даетзначительного эффекта на концах и влияет только на прохождение линии сплайнав средней части, что связано с наличием трех внутренних узлов.

Кроме того,таких же важных политических и экономических событий, как либерализация1992 года, кризис 1999 года и ввод материнского капитала в 2007 году (послепринятия самого закона в 2006 году) не прослеживается. Еще одной точкой могбы стать экономический кризис 2008 года, но нельзя добавить еще одинвнутренний узел, т.к.

будет недостаточно точек для построения сплайна.Отметим, что для республики Кабардино-Балкария удалось подобрать толькоодин внутренний узел, соответствующий моменту ввода материнского капитала.Рассмотрим аппроксимацию полиномами для обоснования выбора степениалгебраического многочлена, используемого в сплайн-аппроксимации.Аппроксимация полиномами. В нашем случае не имеет смыслапользоваться полиномами высоких степеней, т.к. ряд визуально стабилизируетсяпосле взятия первых двух разностей, а достаточную гладкость дает полином97третьейстепени.Такжепосмотрим,насколькобудетуменьшатьсясреднеквадратичное отклонение при увеличении порядка полинома. Начнемприближать данные полиномами, начиная с первой степени и выше. Выпишемсреднеквадратичное отклонение регрессии: 0,1776; 0,0713; 0,0323; 0,0321;0,0309… Оно стабилизируется начиная с полинома третьей степени.Анализ остатков аппроксимации кубическим сплайном по точкамсобытий. В качестве тренда используем сплайн с внутренними узлами,расположенными по событиям, так как он имеет под собой экономическоеобоснованиеВерификацияприпрочихвыбраннойнезначительномоделипоотличающихсяпоследнимхарактеристиках.двумточкамдаетудовлетворительный эффект по отклонениям: 1,5% для 2009 года и 2% для 2010.Верификация сплайновой модели для Кабардино-Балкарии дает отклонение,соответственно, в 6% и 9%, но, как мы увидим дальше, этот результат не так ужплох.

Для Тюменской области отклонение составило 1% и 2,2%. Рассмотримграфик остатков.Остатки Сплайна № 30.060.040.02201020082006200420022000199819961994-0.02199219900-0.04-0.06-0.08Рисунок 9 – График остатковПолученный ряд визуально стационарен. Можно было бы предположитьсезонную авторегрессию, если бы у нас было хотя бы три полных цикла. Попытки98построить модель АРПСС не дают приемлемого результата – ошибка оченьвелика, а прогноз мало отличается от среднего.Другие модели.

Характеристики

Список файлов диссертации

Подсистема поддержки принятия решений для планирования социальных выплат информационной системы типа электронный социальный регистр населения
Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6384
Авторов
на СтудИзбе
308
Средний доход
с одного платного файла
Обучение Подробнее