Главная » Просмотр файлов » Отзыв официального оппонента

Отзыв официального оппонента (1150852)

Файл №1150852 Отзыв официального оппонента (Структурные аппроксимации временных рядов)Отзыв официального оппонента (1150852)2019-06-29СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла

ОТЗЫВ ОФИЦИАЛЬНОГО ОППОНЕНТА .доктора физико-м«псм пи шскнх паук. профессора Георгия,'!еонидонича !1! енлякона на диссертационную работу «С структурные аппроксимации временных рядов». представленную Звонаревым Никитой Константиновичем на соискание у Юной степени кандид«иа физико-математических наук по специальности 01.0! .07 -- вычислительная математика.

Актуальность темы диссертации В диссертационной работе Звонарева 11,!». рассмагринается с.пшдартная статистическая задача оценинанпя параметров н параметрической модели временного ряда в присутствии шума. В гаки» зада гах обычно применяется мепэд наименьших квадратов с весами, зависни)п»ш»п модели шума. Однако )зассг»иагриваемый параметрический класс моделей сигнала пс является стандартным с точки зрения параметрической статистики временных Рядов.

Для залшшя модели сигнала. на е~ о основе с гров гся специа:и ным образом сконсг)г«иронанная ганкслева»шт)эица. начинаем«»~ траекторной, Модель задается ранго»л яой м;прицы. Множесгво рядов с траекторными матрицами рагин г называюгся рядами ранга г. 1'акое задание модели встречается н ряде задач обработки сигналов, например. в ~алачах идентификации линейных систем. В случае обычного параметрическог о задания сигналов.

большинство 1по не все) нременныс ряды заданного ранга прсдставимы в виде суммы произвелений полиномов. экспоненциальных и синусоидальных временных рядов. Нз-за нестандартной параметризации данного к:исса сигналов, для решения задачи «ценинания сигналов используется два подхода, Один из них — это внедение параметризации через ортогоналыюсть отрезков ряда некоторому вектору длины, на единицу большей заданному рангу.

Другой подход позволяет вообще отказаться от параметризапии и искать решение н матричном виде — т.е. ровно н той форме, в которой задана сама модель. Во нюром случае (назовем его матричным) рассматривается модификация иге!эационнш о гас~ода Кэдзоу. Оба подхода к решенинэ т.

н, задач «««агцсизгей )ом-гап1 а)з)згоя~па))оп» акгинно развинакмся в последние годы в зарубежной ли гор«и у )эс. Резулыаты работы и практическая значимость В работе рассматриваются следукнцне вопросы: построение подходящей параметризации. построение методов. которые решают задачу с большей точностью и устойчивостькэ, чем разработанные на данный момент.

нзу чение статистических снойств оценок. Наиболее ва'кными теоретическими резу«зьтагами, полученными в работе, являются; 1) Результаты о параметризации множества временных рядов ранга г ГТеоремгя 2.2.!. 2.2.2, !!редложение 2.2.2). 2) Результат об устойчивости предложенного параметрического метода (Теорема 3.2.1). 3) Формулировки (4.7). !4.8) калачи поиска весов для метода Кэдзоу„Теорема 4.2.2 об их часа ичной эквив««ьзентностп. Отдельно отмечу результаты, касающиеся полученных статистических свойств оценок !Теоремы 2.5.1, 2.5.2. Г!редложение 2.5.2 для оценок по параметрическому методу, Лемма 4.7,2 и Теорема 4.7,1 для матричного случая), Полученные теоретические результаты относительно вида касательного подпространства позволяют получить явный вид дисперсии линейного члена ошибки оценки сш цала.

Гакого сорта рсзульгаты покагывщот. По диспс1эсия ошибки прн определегшых ус-юанях близка к ~ ранние РаоЕрггягера, а также позноляюг оцепить ошибки оценивания сигнала. '1соретические резульппы о дисперсии ошибки бгяли проверены с помощью численного моделирования. Все полученные георе ~ ические результаты являются новыми. При пгкчроении алгоритмов оптимизации ав гором сделан упор на случай стационарного гчвторе~ рессионного шума, Магригга весов в гаком случае является ленточной, что позволило авчору построить быс|рые реа:шзацип моголов оптимизапии.

Используемая модель шукча в виде процесса авторегрессии является частым предположением о виде шума на практггке, однако в прсдшествуюпгих рабгтгах этому не бьшо уделено достаточного внимания. В часч ности. известный параметрический метод (Ыечсй Й Магйогвйу1 н слэчас ангорегрессионного гпума теряет вычислительную эффективность. С пой то ~ки зрения алгори гмы, предложенные в диссертапии, позволяюч расширить ооласчь применения. Исследованные в диссертационной работе алгоритмы могут успешно применяться для оцспивания сигнгчлов конечного ранга. ')то подтнерждается приведенными в работе примерами использования щпоритма для опенивания параметров в биологических данных и .шя опепинания сигнала в реальном нремепном ряде по уровню безработицы в США„ содержащем сильный цветной шум. Замечании. 1. Исходная задача наименьших квадратов сформулирована как задача глобальной оптимизации, и именно она представляет первостепенный интерес.

В работе же рассматриваются только методы локальной оптимизации при решении задачи наименыпих кнадрггчюв. В связи с зчпм возникает вопрос о том, находят ли предложенные методы глобальный минимум, и можно ли использовать их для улучшения извссгных методов плобального поиска. 2. В задачах исследования нременных рядов. вообще говоря, явное значение ранга сигнала и ковариационной матрицы неизвестны. В работе же предполагается, что ранг сиппгла и вид ковариационной м и рицы гпума заранее известен. Это означает.

по ковариационнуго мгп рицу вместе с рщп ом необходимо как-то предварительно оценивать. Вопрос лишь еле~ ка загронуг в последнем практическом примере, однако вопрос гребует более полного исследования 1ггаггрихчер, распределение оцгибки оценки сигнала при оцениваемой ковариационной матрице). 3. В рабоче рассмотрен только линейный по возмущению порядок ошибки. Интерес также могут представлять ошибки больших порядков.

Более того, в работе не исследована устойчивость к возмущениям в модели сигнала, что является важным критерием для практических применений методов, 4. Важной задачей исследования временных рядов является оценка параметров модели. В работе подробно разобрана тема оценки сигнала, но только вскользь рассмотрен вопрос об оценивании параметров в явной параметрической форме через суммы произведений полиномов, экспонент и косинусов. Например, в работе отсутствует результат об асимптотическом распределении оценок параметров, который бьщ бы полезен для практического применения, ( .лс:1анпыс замечш!ия Оо:иэ!Ис!й! '-Истыо касак)1ся Возможных ВВ1зиан"!ОВ 1зазВития полученных Н.К. Звонаревым результатов.

?акл!Оченне. Лвтор решил поставленные задачи. В зтом смысле работа является лен ически заВср1псцным исследованием. содержи' !' ноВые научныс ре'5ультаты и поло!кения. Мгззсриалы диссертации опубликованы в четырех научных работах. в том числе, в Вестнике СПбГУ н одной раооте из журншш. ипдексируемого в %СЬ об Вс!енсе. Лв1ореферат отражает содержание диссертации. Немаловажно.

по диссертация написана хорошим русским языком. !1а основшши вьппеизложснного счигань что диссертационная раооза Н.К. Звонарева !Струк!урные аппроксимапии време!шых рядов» соответствует кри!ериям п. 9 По.юженпя О порядке присуждеш!я 5 чсных степеней» ВЛК, предъявляемым к кандидагским диссертациям. а се автор Звонарев Никита Константинович заслуживает присуждения ему ученой степени кандидата физико-математических наук по специальности 01.01.07 «Вычислительная математика». Офипиальпый оппонент.

доктор физико-х!атеыатических наук. профессор кафедры прикладной математики !Редсральног!з Государствсннсчо Лвгопомного Образовательного Учреждения Высшего гРбра 5о!5ания «Санкт-Пс 1ербу рга ий поли гсгнш ческий у ниверсизет Петра Великого» Ллрес: 195251. Саик!-1!сзсрбур!. Пошпехничсская, '9. Контактный центр: 8!в!' ! 7 и-!!5-:0 111евляков Георп!й Леонидович .

Характеристики

Тип файла
PDF-файл
Размер
2,01 Mb
Высшее учебное заведение

Тип файла PDF

PDF-формат наиболее широко используется для просмотра любого типа файлов на любом устройстве. В него можно сохранить документ, таблицы, презентацию, текст, чертежи, вычисления, графики и всё остальное, что можно показать на экране любого устройства. Именно его лучше всего использовать для печати.

Например, если Вам нужно распечатать чертёж из автокада, Вы сохраните чертёж на флешку, но будет ли автокад в пункте печати? А если будет, то нужная версия с нужными библиотеками? Именно для этого и нужен формат PDF - в нём точно будет показано верно вне зависимости от того, в какой программе создали PDF-файл и есть ли нужная программа для его просмотра.

Список файлов диссертации

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6418
Авторов
на СтудИзбе
307
Средний доход
с одного платного файла
Обучение Подробнее