Диссертация (1150730), страница 19
Текст из файла (страница 19)
Drinfeld, Hopf algebra and the Yang–Baxter equation, Soviet. Math.Dokl. 32 (1985) 254–258.14912. M. Jimbo, A q-difference analogue of U(G) and the Yang–Baxter equation,Lett. Math. Phys. 10 (1985) 63–69.13. V. Chari, A. Pressley, Quantum affine algebras and their representations,Amer. Math. Soc., Providence, RI, 1995.14. A. Klimyk, K. Schmudgen Quantum groups and their representations,Springer-Verlag, Berlin Heidelberg, 1997.15. I. G. Macdonald, Symmetric functions and Hall polynomials, OxfordUniversity Press, second edition, 1995.16.
A. Schilling, S.O. Warnaar, Supernomial coefficients, polynomial identitiesand q-series, Ramanujan J. 2 (1998) 459–494.17. A Schilling, S.O. Warnaar, Inhomogeneous lattice paths, generalized Kostkapolynomials and An supernomials, Comm. Math. Phys. 202 (1999) 359–401.18. B. Feigin and S. Loktev, On generalized Kostka polynomials and thequantum Verlinde rule Differential topology, infinite-dimensional Lie algebras,and applications, Amer.
Math. Soc. Transl. Ser. 2 Vol. 194 (Amer. Math.Soc.,Providence, RI, 1999) pp. 61–79.19. V. Chari, On the fermionic formula and the Kirillov-Reshetikhin conjecture,Internat. Math. Res. Notices, (12):629–654, 2001.20. V. Chari, S. Loktev, Weyl, fusion and Demazure modules for the currentalgebra of +1 , math.QA/0502165.21. V. Chari, A. Moura, The restricted Kirillov-Reshetikhin modules for thecurrent and twisted current algebras, Comm. Math.
Phys., 266:431–454, 2006.22. E. Ardonne, R. Kedem, Fusion products of Kirillov-Reshetikhin modules andfermionic multiplicity formulas, math.RT/0602177.23. B. Feigin, S. Loktev, Multi-dimensional Weyl modules and symmetricfunctions, Comm. Math. Phys. 251 (2004),427–425, math.QA/0212001.24. V. Chari, Integrable representations of affine Lie algebras, Invent.
math. 85pp.317–335 (1986).15025. V. Chari, A. Moura, Characters and blocks for finite-dimensionalrepresentations of quantum affine algebras, Int. Math. Res. Not. 2005, no. 5,257–298, math.RT/040615126. V. Chari, A. Pressley, Integrable and Weyl modules for quantum affine 2 ,Quantum groups and Lie theory (Durham, 1999), 48–62.27.
V. Chari, A. Pressley, New unitary representations of loop groups, Math.Ann., 275, pp. 87-104 (1986).28. B. Feigin, A. N. Kirillov, S. Loktev, Combinatorics and geometry of higherlevel Weyl modules, math.QA/0503315.29. E. Frenkel, E. Mukhin, Combinatorics of q-characters of finite-dimensionalrepresentations of quantum affine algebras, Comm. Math.
Phys. 216 (2001),no. 1, 23–57, math.QA/9911112.30. E. Frenkel, N. Reshetikhin, The q-characters of representations of quantumaffine algebras and deformations of W-algebras, Recent developments inquantum affine algebras and related topics (Raleigh, NC, 1998), Contemp.Math., 248, Amer. Math. Soc., Providence, RI, 1999, pp. 163–205,math.QA/9810055.31. R. Kedem, Fusion products, cohomology of -flag manifolds and Kostkapolynomials, IMRN no. 25 (2004), 1273–1298.
math.RT/031247832. M. Kashiwara, Crystalizing the q-analogue of universal enveloping algebras,Comm. Math. Phys. 133 (1990), 249–260.33. M. Kashiwara, On crystal bases of Q-analogue of universal envelopingalgebras, Duke Math. J. 63 (1991), 465–516.34. M. Kashiwara, T. Nakashima, Crystal graphs for representations of theq-analogue of classical Lie algebras, J. Algebra 165 (1994), 295–34535. G.Lusztig, Canonical bases arising from quantized enveloping algebras, J.Amer. Math. Soc. 3 (1990), 447–498.36.
G.Lusztig, Quantum deformation of certain simple modules over enveloping151algebras, Adv. Math. 70 (1988), 237-24937. Jin Hong, Seok Jin-Hang, Introduction to Quantum Groups and CrystalBases, Graduate studies in mathematics, vol.42, American MathematicalSociety, 200238. M. Kashiwara, Level zero fundamental representations over quantized affinealgebras and Demazure modules, Publ. Res. Inst. Math. Sci. 41 (2005), no. 1,223–250, math.QA/0309142.39. S.J. Kang, M.
Kashiwara, K. C. Misra, Crystal bases of Verma modules forquantum affine Lie algebras, RIMS preprint 887 (1992); Compositio Math. 92(1994) 299-325.40. S.J. Kang, M. Kashiwara, K. C. Misra, T. Miwa, T. Nakashima, A.Nakayashiki, Affine crystals and vertex models, Int. J. Mod. Phys. A 7 (suppl.1A) (1992) 449-484.41. P.Littelmann, Crystal graphs and Young tableaux, J. Algebra 175 (1995), no.1, 65–87.42.
P.Littelmann, Paths and root operators in representation theory, Ann. ofMath. (2) 142 (1995), 499–525.43. P. Littelmann, Characters of representations and paths inℎ ,Representation Theory and Automorphic Forms, Proc. Sympos. Pure Math.Vol. 61, pp. 29–49, Amer. Math. Soc., Providence, RI, 1997.44. P. Littelmann, The path model, the quantum Frobenius map and standardmonomial theory, Algebraic Groups and Their Representations, NATO Adv.Sci. Inst. Ser. C Vol. 517, pp.
175–212, Kluwer Acad. Publ.,Dordrecht, 1998.45. S.Kumar, Proof of Parthasarathi-Ranga-Rao-Varadarajan Conjecture, Invent.Math, 93, 117-130, 1988.46. T. Joseph, Quantum groups and their primitive ideals, Springer Verlag, Berlin,199447. M. Kashiwara, Crystal bases of modified quantized enveloping algebras, RIMS152917, 199348. S. Naito, D. Sagaki, Path model for a level-zero extremal weight module overa quantum affine algebra, Int. Math. Res. Not.
2003, 1731–1754.49. S. Naito, D. Sagaki, Crystal of Lakshmibai-Seshadri paths associated to anintegral weight of level zero for an affine Lie algebra, Int. Math. Res. Not.2005, 815–840.50. R. Kedem, A pentagon of identities, graded tensor products, and the KirillovReshetikhin conjecture, math.QA/10080980.51. R. Kedem, Fermionic spectra in integrable models, math.QA/14055585.52. R. Kedem, T. R. Klassen, B. M. McCoy, E. Melzer, Fermionic sumrepresentations for conformal field theory characters, Phys.
Lett. B 307 (1993),no. 1-2, 68–76.53. M.Kleber, Finite dimensional representations of quantum affine algebras,arXiv:math/9809087.54. M. Kleber, Combinatorial structure of finite dimensional representations ofYangians: the simply-laced case, Internat. Math. Res. Notices 1997, no. 4,187–20155. E.Ardonne, R. Kedem, M. Stone, Fermionic characters and arbitrary highestweight integrable affine +1 modules, Comm.
Math. Phys., 264(2):427–464,2006.56. A.Schilling, O. Warnaar, Inhomogeneous lattice paths, generalized Kostkapolynomials and An supernomials, Commun. Math. Phys. 202 (1999) 359-401.57. A. Lascoux, M. P. Schutzenberger, Sur une conjecture de H.O. Foulkes, CRAcad. Sci. Paris 286A (1978) 323–324.58. A. N. Kirillov, M. Shimozono, A generalization of the Kostka-Foulkespolynomials, math.QA/9803062.59. G. Hatayama, A.
Kuniba, M. Okado, T. Takagi, Z. Tsuboi, Paths, crystals andfermionic formulae, Prog. Math. Phys. 23 (2002) 205–272, Birkhauser Boston,153Boston, MA.60. G. Hatayama, A. Kuniba, M. Okado, T. Takagi, Y. Yamada, Remarks onfermionic formula, Contemp. Math. 248 (1999), 243–291.61. A. Nakayashiki and Y.
Yamada, Kostka polynomials and energy functions insolvable lattice models, Selecta Math. (N.S.) 3 (1997) 547–599.62. M. Okado, A. Schilling, M. Shimozono, A crystal to rigged configurationbijection for nonexceptional affine algebras, Algebraic combinatorics andquantum groups, pages 85–124. World Sci. Publishing, River Edge, NJ, 2003.(1)63. A. Schilling, A bijection between type crystals and rigged configurations,J. Algebra, 285(1):292–334, 2005.64. A.
Schilling, M. Shimozono, X = M for symmetric powers, J. Algebra,295(2):562–610, 2006.65. P. di Francesco, R. Kedem, Proof of the combinatorial Kirillov-Reshetikhinconjecture, International Mathematics Research Notices, 2008 (2008).66. P. di Francesco, R. Kedem, Quantum cluster algebras and fusion products,International Mathematics Research Notices, (2013), p.
rnt004.67. R. Kedem, Q-systems as cluster algebras, Journal of Physics A: Mathematicaland Theoretical, 41 (2008), p. 194011.68. H.Bethe, Zur Theorie der Metalle. I. Eigenwerte und Eigenfunktionen derlinearen Atomkette, Z. Phys.,71, H. 3-4, 205-226 (1931).69. W.
Heisenberg, Zur Theorie der Ferromagnetismus, Z. Phys. 49 (1928), 619.70. L.A. Takhtadzhyan and L.D. Faddeev, Spectrum and scattering of excitationsin the one-dimensional isotropic Heisenberg magnet,J. Sov. Math., 24, No. 2(1984).71. L. D.
Faddeev, E. K. Sklyanin, and L. A. Takhtadzhyan, Quantum inverseproblem method I, Theor. Math. Phys. 40 (1980), 688.72. L. A. Takhtadzhyan, L. D. Faddeev, The Quantum method of the inverseproblem and the Heisenberg XYZ model, Russ. Math. Surveys 34 (1979), 11.15473. A.A.Belavin, Exact solution of the two-dimensional model with asymptoticfreedom, Phys.Lett. v.87B, N1-2, p.117-121,197974.
N. Andrei, J.H.Lowenstein, Derivation of the chiral Gross-Neveu spectrumfor arbitrary SU(N) symmetry, Phys.Lett.B. v.90B, N3, p.106-110,198075. A.N. Kirillov, Combinatorial identities, and completeness of eigenstates ofthe Heisenberg magnet,Zap. Nauchn. Sem. LOMI, 131, 88-105 (1983).76. A.
N. Kirillov and N. Yu. Reshetikhin, Formulas for Multiplicities ofOccurence of Irreducible Components in the Tensor Product of Representationsof Simple Lie Algebras, J.Math.Sc., 80, No. 3,(1996).77. A. N. Kirillov, N. Yu. Reshetikhin, Representations of Yangians andmultiplicities of ocurrence of the irreducible components of the tensor productof representations of simple Lie algebras, J. Soviet Math.52 (1990), 3156–316478. S.