Главная » Просмотр файлов » Диссертация

Диссертация (1150569), страница 19

Файл №1150569 Диссертация (Разработка и оценка числа шагов работы алгоритмов решения задач логико-предметного распознавания образов с использованием тактик обратного метода Маслова) 19 страницаДиссертация (1150569) страница 192019-06-29СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 19)

3.5 равно наибольшему из этих шестичисел, то есть 12 шагов.Пустой F-набор не выведен (6 шагов), но первый, третий и четвертыйпроцессоры вывели тупиковые F-наборы (6 шагов), новых тавтологичных формулне найдено ни для одного процессора (17 шагов у каждого процессора). Ищемновые рабочие формулы для этих процессоров.118Для первого процессора это сначала V  x1 , y4 , x3  (1 шаг), но для неѐотсутствует подходящая потенциально контрарная формула (6 шагов), потомV  x2 , y4 , x3  (1 шаг), затем L x2 , x1 , y4  (1 шаг), но и для них отсутствуютпотенциально контрарные формулы (7 шагов). Таким образом, первый процессорпереходит к п. 4.

Отменяем для него последнее действие п.3.5 (12 шагов), теперьдлина фрагмента равнаl1  0(1 шаг), присваиваем нулевой приоритетприсвоению, выполненному в п. 3.3 (1 шаг). Берем для первого процессора новуюпотенциально контрарную формулу V  x2 , x4 , x1  (1 шаг).Берем для второго процессора новую рабочую формулу V  x2 , y3 , x1  иследующую потенциально контрарную формулу V  x2 , x5 , x1  (4 шага). Длявторого процессора увеличивается процессоров длина фрагментаитеперьфрагментвторогопроцессоравыглядит(1 шаг)l2  2следующимобразомV  x2 , x4 , x1  & V  x2 , x5 , x1  .Для третьего процессора это V  x5 , y4 , x2  , V  x1 , y4 , x2  и L y3 , x2 , x4  (3 шагана перебор трех формул).

Для всех трех формул отсутствуют потенциальноконтрарные (13 шагов). Теперь третий процессор переходит к п. 4. Отменяем длянего последнее действие п.3.5 (12 шагов), теперь длина фрагмента равнаl3  0(1 шаг), присваиваем нулевой приоритет присвоению, выполненному в п. 3.3 (1шаг). Берем для третьего процессора новую потенциально контрарную формулуV  x1, x2 , x3  (1 шаг).Для четвертого процессора это V  x4 , y4 , x1  , V  x3 , y4 , x1  и L y3 , x2 , x4  (3шага). Для этих трех формул тоже отсутствуют потенциально контрарные (13шагов).

Теперь четвертый процессор переходит к п. 4. Отменяем для негопоследнее действие п.3.5 (12 шагов), длина фрагмента равна l4  0 (1 шаг),присваиваем нулевой приоритет присвоению, выполненному в п. 3.3 (1 шаг).119Берем для четвертого процессора новую потенциально контрарную формулуV  x1, x2 , x3  (1 шаг).Берем для пятого процессора новую рабочую формулу V  y1 , x4 , x2  , но онане имеет потенциально контрарной (7 шагов), теперь берем V  y1 , x3 , x2  (1 шаг),но и она не имеет потенциально контрарной (6 шагов).

Так же, как и V  x2 , y1 , x4  ,V  x4 , x2 , y1  и L y3 , x2 , x4  (13 шагов). Отменяем для пятого процессора последнеедействие п. 3.5 (10 шагов), уменьшаем приоритет отождествления списков y3 , y4 , y2  и x4 , x3 , x2  (1 шаг)контрарную формулу V  x1 , x2 , x3  (1 шаг).переменныхи берем новую потенциальноИщем шестого процессора новую рабочую формулу V  x2 , x4 , y2  иследующуюпотенциальноконтрарнуюформулуV  x2 , x4 , x1  (3 шага).Увеличивается для шестого процессора длину фрагмента l6  2 (1 шаг) и теперьфрагментшестогопроцессоравыглядитследующимобразомV  x2 , x4 , x1  & V  x2 , x5 , x1  .Всего на эту итерацию требуется наибольшее количество шагов,затраченное каким-либо процессором.

В нашем случае это 54 шага у первого(третьего или четвертого) процессора.Согласно п. 3.3 процессоры решают следующие системы уравнений (3шага), запоминаем текущие унификаторы (3 шага), длина фрагмента для каждого222222процессора l1  1, l2  2 , l3  1, l4  1, l5  1, l6  2 (1 шаг)ПРОЦЕССОРПЕРВЫЙy1  x2y2  x1y3  x4ВТОРОЙТРЕТИЙЧЕТВЕРТЫЙПЯТЫЙШЕСТОЙy1  x3y 2  x2y3  x1y2  x3y2  x1y3  x5y1  x2y2  x1y3  x3y3  x1y4  x2120Решения всех процессоров попарно противоречивы (16 шагов).Согласно п.

3.5 имеем следующие шесть F-наборовпервый процессор V  x2 , x4 , x1   V  x2 , x4 , x1   V  x2 , x5 , x1     V  x , x , x   V  x , x , x   V  x , x , x  3 1 44 3 24 5 3  V  x , y , x   V  x , x , x   V  x , x , x   V  x , x , x   2 4 11 2 32 4 12 5 1   V  x3 , x1, x4   V  x4 , x3 , x2   V  x4 , x5 , x3   V  x1, x2 , x4   V  x1, x2 , x3   V  x2 , x4 , x1   V  x2 , x5 , x1      V  x3 , x1, x4   V  x4 , x3 , x2   V  x4 , x5 , x3   V  x4 , x1, x2   V  x1, x2 , x3   V  x2 , x4 , x1   V  x2 , x5 , x1     V  x3 , x1, x4   V  x4 , x3 , x2   V  x4 , x5 , x3  V  x4 , y4 , x1   V  x1, x2 , x3   V  x2 , x4 , x1   V  x2 , x5 , x1     V  x3 , x1, x4   V  x4 , x3 , x2   V  x4 , x5 , x3 L x4 , x2 , y4   Lx4 , x2 , x5 на замену всех вхождений переменных на их значения уходит12 шагов;второй процессор  V  x2 , x5 , x1   V  x1, x2 , x3   V  x2 , x4 , x1   V  x2 , x5 , x1      V  x3 , x1, x4   V  x4 , x3 , x2   V  x4 , x5 , x3 Vx,x,xVx,x,xVx,x,xVx,x,x2 4 11 2 32 4 12 5 1 V  x3 , x1, x4   V  x4 , x3 , x2   V  x4 , x5 , x3   V  x1, x2 , x5   V  x1, x2 , x3   V  x2 , x4 , x1   V  x2 , x5 , x1     V  x3 , x1, x4   V  x4 , x3 , x2   V  x4 , x5 , x3   V  x5 , x1, x2   V  x1, x2 , x3   V  x2 , x4 , x1   V  x2 , x5 , x1     Vx,x,xVx,x,xVx,x,x3 1 44 3 24 5 3  V  x5 , x4 , x1   V  x1, x2 , x3   V  x2 , x4 , x1   V  x2 , x5 , x1     Vx,x,xVx,x,xVx,x,x3 1 44 3 24 5 3L x5 , x2 , x4   L x4 , x2 , x5 на замену всех вхождений переменных на их значения уходит 4 шага;третий процессор121  V  x2 , x3 , x1   V  x1, x2 , x3   V  x2 , x4 , x1   V  x2 , x5 , x1      V  x3 , x1, x4   V  x4 , x3 , x2   V  x4 , x5 , x3  V  x , y , x   V  x , x , x   V  x , x , x   V  x , x , x   2 4 11 2 32 4 12 5 1  V  x3 , x1, x4   V  x4 , x3 , x2   V  x4 , x5 , x3  V  x1, x2 , x3   V  x1, x2 , x3   V  x2 , x4 , x1     V  x , x , x   V  x , x , x   V  x , x , x  3 1 44 3 24 5 3   V  x3 , x1, x2   V  x1, x2 , x3   V  x2 , x4 , x1   V  x2 , x5 , x1     V  x3 , x1, x4   V  x4 , x3 , x2   V  x4 , x5 , x3 Vx,y,xVx,x,xVx,x,xVx,x,x3 4 11 2 32 4 12 5 1   V  x3 , x1, x4   V  x4 , x3 , x2   V  x4 , x5 , x3 Lx3 , x2 , y4   Lx4 , x2 , x5 на замену всех вхождений переменных на их значения уходит 12 шагов;четвертый процессор  V  x3 , x1, x2   V  x1, x2 , x3   V  x2 , x4 , x1   V  x2 , x5 , x1      V  x3 , x1, x4   V  x4 , x3 , x2   V  x4 , x5 , x3  V  x , y , x   V  x , x , x   V  x , x , x   V  x , x , x   3 4 21 2 32 4 12 5 1  V  x3 , x1, x4   V  x4 , x3 , x2   V  x4 , x5 , x3   V  x2 , x3 , x1   V  x1, x2 , x3   V  x2 , x4 , x1   V  x2 , x5 , x1      V  x3 , x1, x4   V  x4 , x3 , x2   V  x4 , x5 , x3   V  x1, x2 , x3   V  x1, x2 , x3   V  x2 , x4 , x1   V  x2 , x5 , x1     V  x4 , x3 , x2   V  x4 , x5 , x3  V  x1, y4 , x2   V  x1, x2 , x3   V  x2 , x4 , x1   V  x2 , x5 , x1     V  x3 , x1, x4   V  x4 , x3 , x2   V  x4 , x5 , x3 Lx1, x3 , y4   Lx4 , x2 , x5 на замену всех вхождений переменных на их значения уходит 12 шагов;пятый процессор122 V  y1 , x1 , x3   V  x1 , x2 , x3   V  x2 , x4 , x1   V  x2 , x5 , x1       V  x3 , x1 , x4   V  x4 , x3 , x2   V  x4 , x3 , x5  V  y1 , x2 , x3   V  x1 , x2 , x3   V  x2 , x4 , x1   V  x2 , x5 , x1       V  x3 , x1 , x4   V  x4 , x3 , x2   V  x4 , x3 , x5  V  x3 , y1 , x1   V  x1 , x2 , x3   V  x2 , x4 , x1   V  x2 , x5 , x1       V  x3 , x1 , x4   V  x4 , x3 , x2   V  x4 , x3 , x5  V  x1 , x3 , y1   V  x1 , x2 , x3   V  x2 , x4 , x1   V  x2 , x5 , x1      Vx,x,xVx,x,xVx,x,x3 1 44 3 24 3 5  V  x , x , x   V  x , x , x    V  x , x , x   V  x , x , x    1 2 31 2 32 4 12 5 1  V  x3 , x1 , x4   V  x4 , x3 , x5 Lx1 , y1 , x2   Lx4 , x2 , x5 на замену всех вхождений переменных на их значения уходит 10 шагов;шестой процессор  V  x2 , x4 , x1   V  x1, x2 , x3   V  x2 , x4 , x1   V  x2 , x5 , x1     V  x3 , x1, x4   V  x4 , x3 , x2   V  x4 , x5 , x3   V  x2 , x5 , x1   V  x1, x2 , x3   V  x2 , x4 , x1   V  x2 , x5 , x1     V  x3 , x1, x4   V  x4 , x3 , x2   V  x4 , x5 , x3   V  x1, x2 , x4   V  x1, x2 , x3   V  x2 , x4 , x1   V  x2 , x5 , x1     V  x3 , x1, x4   V  x4 , x3 , x2   V  x4 , x5 , x3   V  x4 , x1, x2   V  x1, x2 , x3   V  x2 , x4 , x1   V  x2 , x5 , x1     Vx,x,xVx,x,xVx,x,x3 1 44 3 24 5 3  V  x4 , x5 , x1   V  x1, x2 , x3   V  x2 , x4 , x1   V  x2 , x5 , x1     Vx,x,xVx,x,xVx,x,x3 1 44 3 24 5 3L x4 , x2 , x5   L x4 , x2 , x5 на замену всех вхождений переменных на их значения уходит 4 шага.Таким образом, на выполнение п.

Характеристики

Список файлов диссертации

Разработка и оценка числа шагов работы алгоритмов решения задач логико-предметного распознавания образов с использованием тактик обратного метода Маслова
Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6384
Авторов
на СтудИзбе
308
Средний доход
с одного платного файла
Обучение Подробнее