Диссертация (1150474), страница 17
Текст из файла (страница 17)
Volokh, Inflation and rupture of rubber membrane. / К. Balakhovsky, K.Y. Volokh // Int. J. Fract, 2012 —177 — 179–190.85. Batra, R. C. Treloar's biaxial tests and Kearsley's bifurcation in rubber sheets. / R. C. Batra, I.Mueller, P. Strehlow // Mathematics and Mechanics of Solids, 2005 —10 —705-713.86. Batra, R. C. Inflation and eversion of functionally graded non-linear elastic incompressiblecircular cylinders. / R.C. Batra, A. Bahrami // International Journal of Non-Linear Mechanics,2009 — 44 — 311-32387. Bochkareva, N. L. Оn stability of arch damper. / N. L. Bochkareva, E.
P. Kolpak // VestnikSankt-Peterburgskogo Universiteta. Ser 1. Matematika Mekhanika Astronomiya, 1993 — 4 —49-53.88. Faita, F. L. Characterization of natural rubber membranes using scaling laws analysis. / F. L.Faita, M. E. R. Dotto, L. G. Franca, F. C. Cabrera, A. E. Job, I. H. Bechtold // EuropeanPolymer Journal, 2014 — 50 — 249–254.89. Feng, Z. Q. Finite deformations of Ogden’s materials under impact loading. / Z. Q. Feng, F.Peyraut, Q. C.
He // International Journal of Non-Linear Mechanics, 2006 — 41 — 575-585.90. Fu, Y. B. Post-bifurcation analysis of a thin-walled hyperelastic tube under inflation./ Y. B. Fu,S. P. Pearce, K. K. Liu // International Journal of Non-Linear Mechanics, 2008 —43 — 697–706.91. Gent, A. N.
Forms of the stored (stain) energy function for vulcanized rubber. / A. N. Gent, A.G. Thomas // J. Polymer Sci., 1958 — 28 — 625-628.13092. Gent, A. N. Elastic instabilities in rubber. / A. N. Gent // International Journal of Non-LinearMechanics, 2005 — 40 — 165 - 175.93. Gent, A. N. Non-linear stresses in a rubber cylinder sheared by pressure at one end./ A. N. Gent,O. H. Yeoh // International Journal of Non-Linear Mechanics, 2009 — 44 — 797-800.94. Hart-Smith. Large elastic deformation of thin rubber membranes. / Hart-Smith, J. D. Crisp //Int.. J. Eng.
Sci., 1967 —5 —1-24.95. Kabrits, S. A. Square membrane under large deformations. / S. A. Kabrits, E. P. Kolpak, K. F.Chernykh // Mechanics of Solids, 1986 — 21 — 182-186.96. Kabrits, S. A. Small nonsymmetric oscillations of viscoelastic damper under massive bodyaction. / S. A. Kabrits, L. V. Slepneva // Vestnik Sankt-Peterburgskogo Universiteta. Ser 1.Matematika Mekhanika Astronomiya, 1998 — 2 — 78- 85.97.
Kabrits, S. A. Numerical solution of one-dimensional nonlinear statics problems for elastic rodsand shells in the presence of rigid constraits. / S. A. Kabrits, V. F. Terent'ev // Soviet AppliedMechanics, 1984 — V. 20 — рр. 672-675.98. Kongtong, P. Singularities in bending behavior of plates with free corner supports. / P.Kongtong, Y. Sompornjaroensuk, D. Sukawat // Applied Mathematical Sciences, 2013 —V.7— рр. 1213-1222.99. Kanner, L. M.
Elastic instabilities for strain-stiffening rubber-like spherical and cylindrical thinshells under inflation. / L. M. Kanner, C. O. Horgan // International Journal of Non-LinearMechanics. — 2007. — V. 42. — рр. 204–215.100.Kawabata, S. Experimental survey of the strain energy density function of isoprene rubbervulkanizate. / S.
Kawabata, M. Matsuda, K. Tei, H. Kawai // Macromolecules, 1981, — v 14, —N1. — pp. 154 – 162101.Kolesnikov, A. M. Large bending deformations of a cylindrical membrane with internalpressure/ A. M Kolesnikov, L. M. Zubov // ZAMM Zeitschrift fur Angewandte Mathematik undMechanik. — 2009. — V. 89. — № 4. — рр. 288–305.102.Lectez, A.-S. How to identify a hyperelastic constitutive equation for rubber-like materials withmultiaxial tension-torsion experiments. / A.-S. Lectez, E. Verron, B. Huneau // InternationalJournal of Non-Linear Mechanics, 2014 — V.
65 — pp. 260-270.131103.Liu, M. A constitutive equation for filled rubber under cyclic loading. / M. Liu, M. S. Hoo Fatt// International Journal of Non-Linear Mechanics, 2011 — 46 —pp. 446-456.104.Maltseva, L. S. Elastic membranes at large deformation. / L. S. Maltseva // Сборник тезисовконференции «Устойчивость и процессы управления». Изд. СПбГУ. — 2015. — С.362363.105.Maltseva, L.
S. On the Stability of Compressed Plate. / E. P. Kolpak, .L. S. Maltseva, S. E.Ivanov. // Contemporary Engineering Sciences, 2015 —Vol. 8 — no. 20 — pp. 927 – 936.106.Maltseva, L. S. Rubberlike membranes at inner pressure. / E. P. Kolpak, L. S. Maltseva. //Contemporary Engineering Sciences, 2015 — Vol. 8 — no. 36 — pp. 1731-1742.107.Maltseva, L.
S. Non-linear vibrations of rubber membrane. / E. P. Kolpak, L. S. Maltseva, S. E.Ivanov, S. A. Kabrits // Applied Mathematical Sciences, 2016 — Vol. 10 — no. 36 — pp. 17971810.108.Mooney, M. A theory of large elastic deformation. / M. Mooney // Journal of Applied Physics,1940 — 11(9) — pp. 582-592.109.Muller, I. Two Instructive Instabilities in Non-Linear Elasticity: Biaxially Loaded Membrane,and Rubber Balloons / I. Müller // Meccanica, 1996 — 31 — pp. 387-395.110.Muller, I. Rubber and Rubber Balloons, Paradigms of Thermodynamics / I. Müller, P.
Strehlow//Lect. Notes Phys., 2004 — 637 — pp. 1–5.111. Nah, C. Problems in determining the elastic strain energy function for rubber / C. Nah, G.B.Lee, J. Y. Lim, Y. H. Kim, R. SenGupta, A. N. Gent // International Journal of Non-LinearMechanics, 2010 — 45 — pp. 232-235.112.Novozhiliv, V. V. On the forms of the stress-strain relation for initially isotropic nonelasticbodies (geometric aspect of the question) / V. V. Novozhilov // Journal of Applied Mathematicsand Mechanics, 1963 — 27 — pp. 1219-1243.113.Ogden, R. W. Non-Linear Elastic Deformations.
/ R. W. Ogden ,Ellis Horwood, Chichester,UK, 1984 — 526 p.114.Paetsch, C. Non-linear modeling of activebio hybrid materials / C. Paetsch, A. Dorfmann //International Journal of Non-LinearMechanics, 2013 — 56 — pp. 105-114.132115.Rivlin, R. S. Large elastic deformations of isotropic materials. IV. Further developments of thegeneral theory, Philosophical Transactions of the Royal Society of London. / R.
S. Rivlin //Mathematical and Physical Sciences, 1948 — 241(835) — pp. 379-397.116.Rivlin, R. S. The relation between the Valanis-Landel and classical strain-energy functions / R.S. Rivlin // International Journal of Non-Linear Mechanics, 2006 — 41 — pp. 141-145.117.Saccomandi, G. Some generalized pseudo-plane deformations for the neo-Hookean Material /G. Saccomandi // IMA Journal of Applied Mathematics, 2005 — 70 — pp.
550–563.118.Selvadurai, A. P. S. Deflections of a rubber membrane / A. P. S. Selvadurai // Journal of theMechanics and Physics of Solids, 2006 — 54 — pp. 1093–1119.119.Suh, J. B. Shear of rubber tube springs. / J. B. Suh, A. N. Gent, S. G. Kelly // InternationalJournal of Non-Linear Mechanics, 2007 — 42 — pp.
1116–1126.120.Thongperm, Yoowattana. Accurate approximate and analytical methods for vibration andbending problems of plates: a literature survey / Thongperm Yoowattana, PatiphanChantarawichit, Jakarin Vibooljak, Yos Sompornjaroensuk // Applied Mathematical Sciences,2015 — 9 — pp. 1697-1719.121.Treloar, L.R.G. Stress-strain data for vulcanized rubber under various of deformation. / L. R.
G.Treloar // Rubber.Chem.Tech., 1944 — v.17 — N4 — pp. 817-825.122.Wineman, A. Some results for generalized neo-Hookean elastic materials / A. Wineman //International Journal of Non-Linear Mechanics, 2005 — 40 — pp. 271-279.123.Wen, Y. Finite deformation of everted spherical shells composed of incompressiblehyperelastic materials. / Yao Wen, Wei Zhao // Applied Mathematical Sciences, 2013 — 7 —pp.
3303-3308.124.Yan Ju. On a class of differential equations of motion of hyperelastic spherical membranes /Yan Ju, Datian Niu // Applied Mathematical Sciences, 2012 — 6 — pp. 4133-4136..