Диссертация (1150285), страница 15
Текст из файла (страница 15)
Zhuobin L., Changgui L. Guoshun Q. Laurent C., Shixun D.i, et al.. Formationand properties of chalcogenide glasses based on GeS2-Sb2S3-AgI system.Materials Letters. 2014 г., Vol. 132, pр. 203-205.58. Grabowski P., Nowiński J.L. , Garbarczyk J.E. , Wasiucionek M.Mechanosynthesized and ultra-fast quenched AgI–Ag2O–B2O3 materials withhigh AgI contents. Solid State Ionics. 2013 г., Vol. 251, 15, pp. 405-409.59. Torata N., Saito T.,Tatsumisago M.
, Minami T. Microstructure of α -AgIfrozen composites in the AgI-Ag2O-B2O3 system after heat treatment. Journal ofMaterials Science Letters. 1997 г., Vol. 16, pр. 1012–1016 .60. Makiura R., Yonemura T., Yamada T., Yamauch M. et.al. Size-controlledstabilization of the superionic phase to room temperature in polymer-coated AgInanoparticles. Nature Materials. 2009 г., Vol. 8, pр. 476–480.61. Uvarov N.F., Bokhonov B.B., Politov A.A., Vanˇek P., Petzelt J. InterfaceStabilized States of Silver Iodide in AgI–Al2O3. Composites Journal of MaterialsSynthesis and Processing. 2000 г., Vol. 8, 5-6, pр.
207-332.11162. Liang Ch., Terabe K., Hasegawa T., Aono M., Iyi N. Anomalous phasetransition and ionic conductivity of AgI nanowire grown using porous aluminatemplate. Journal of Applied Physics. 2007 г., Vol. 102, р. 124308.63. Liu L.-F., Lee S.-W., Li J.-B. et.al. Enhanced ionic conductivity of AgInanowires/AAO composites fabricated by a simple approach. Nanotechnology.2008, Vol.
19, p. 495706 .64. Bäuerle, Dieter W. Laser Processing and Chemistry. Berlin : Springer, 2011.65. Stafe M. Pulsed Laser Ablation of Solids. Berlin : Springer-Verlag, 2014.66. Zafiropulos V., Laser Ablation in Cleaning of Artworks. б.м. : Published byWorld Scientific Publishing Co. Pte. Ltd., 2002.67. Kuech T., [ред.]. Handbook of Crystal Growth Thin Films and Epitaxy: BasicTechniques.
б.м. : Elsevier, 2014. Vol. 3.68. Harilal S.S., Miloshevsky G.V., Diwakar .PK., LaHaye N.L., Hassanein A.Influence of spot size on extreme ultraviolet efficiency of laser-produced Snplasmas. Journal of Applied Physics. 2009, Vol. 95, p. 221501.69. Zeng X., Mao .X, Mao S.S., Wen S.B., Greif R., Russo R.E. Laser-inducedshockwave propagation from ablation in a cavity. Applied physics letters. 2006 г.,Vol. 88, 6, р. 061502.70. Wei W., Wua J., Li X., Jia Sh., Qi A. Study of nanosecond laser-producedplasmas in atmosphere by spatially resolved optical emission spectroscopy.Journal of Applied Physics 113304.
2013, Vol. 114, p. 113304 .71. LaHaye N..L, Harilal S.S., Diwakar P.K., Hassanein A. The effect of laserpulse duration on ICP-MS signal. J. Anal. At. Spectrom. 2013 г., Vol. 28, pр. 17811787.72. Song K. H., Xu X. Explosive phase transformation in excimer laser ablation.Appl. Surf. Sci. 1998, Vols. 127–129, pp. 111–116.73. Zhang X., Chu S.S., Ho J.R., Grigoropoulos C.P. xcimer laser ablation of thingold films on a quartz crystal microbalance at various argon background pressures.Appl. Phys. A. 1997, Vol. 64, pp.
545–552.74. Porneala C., Willis D.A. Observation of nanosecond laser-induced phaseexplosion in aluminum. Appl. Phys. Lett. 2006, Vol. 89, p. 211121.75. Yoo J.H., Jeong S.H., Mao X.L., Greif R., Russo R.E. Evidence for phaseexplosion and generation of large particles during high power nanosecond laserablation of silicon. Ibid. 2000, Vol.
76, pp. 783–785.11276. Yoo J.H., Jeong S.H., Greif R., Russo R.E. Explosive change in craterproperties during high power nanosecond laser ablation of silicon. J. Appl. Phys.2000, Vol. 88, pp. 1638–1649.77. Tull B.R., Carey J.E., Sheehy M.A., Friend C., Mazur E. Formation of siliconnanoparticles and web-like aggregates by femtosecond laser ablation in abackground gas. Appl. Phys.
A. 2006 г., Vol. 83, pр. 341–346.78. Козлов Б.Н., Мамырин Б.А. Козлов Б.Н., Мамырин Б.А. Журн. техн.физики. 1999 г., Т. 69, стр. 81–84.79. Webb R.L., Dickinson J.T., Exarhos G.J. Characterization of particulatesaccompanying laser ablation of NaNO3. Appl. Spectrosc. 1997 г., Vol. 51, pр.707–717.80. Heitz J., Dickinson J.T.
Characterization of particulates accompanying laserablation of pressed polytetrafluorethylene (PTFE) targets. Appl. Phys. A. 1999 г.,Vol. 68, pр. 515–523.81. Mizuseki H., Jin Y., Kawazoe Y., Wille L.T. Cluster growth processes bydirect simulation Monte Carlo method. Ibid. 2001 г., Vol. 73, pр. 731–735.82. Kuwata M., Luk’yanchuk B., Yabe T. Nanoclusters formation within the vaporplume, produced by ns-laser ablation: effects of the initial density and pressuredistributions. Proc. SPIE.
2000, Vol. 4065, pp. 441–451.83. Callies G., Schittenhelm H., Berger P., Hügel H. Modeling of the expansion oflaser evaporated matter in argon, helium and nitrogen and the condensation ofclusters. Appl. Surf. Sci. 1998 г., Vol. 127-129, pр. 134–141.84. Kelly R., Miotello A. Does normal boiling exist due to laser-pulse or ionbombardment? J. Appl. Phys. 2000 г., Vol. 87, pр.
3177–3179.85. Bulgakova N.M., Bulgakov A.V. Pulsed laser ablation of solids: transitionfrom normal vaporization to phase explosion. Appl. Phys. A. 2001, Vol. 73, pp.199–208.86. Bulgakova N.M., Burakov I.M., Meshcheryakov Y.P., Stoian R., Rosenfeld A.,Hertel I.V. Theoretical models and qualitative interpretations of fs laser materialprocessing. J. Laser Micro/Nanoeng. 2007 г., Vol. 2, pр. 76–86.87. Brailovsky A.B., Gaponov S.V., Luchin V.I. Mechanisms of melt droplets andsolidparticle ejection from a target surface by pulsed laser action.
Appl. Phys. A.1995 г., Vol. 61, pр. 81–86.88. Hare D.E., Franken J., Dlott D.D. Coherent Raman measurements of polymerthin-film pressure and temperature during picosecond laser ablation. J. Appl. Phys.1995, Vol. 77, pp. 5950–5960.11389. Vogel A., Venugopalan V. Mechanisms of pulsed laser ablation of biologicaltissues. Chem. Rev. 2003 г., Vol. 103, pр. 577–644.90. Zhigilei L.V., Garrison B.J. Mechanisms of laser ablation from moleculardynamics simulations: dependence on the initial temperature and pulse duration.Appl. Phys.
A. 1999 г., Vol. 69, pр. 75–80.91. Zhigilei L.V., Kodali P.B.S., Garrison B.J. On the threshold behavior in thelaser ablation of organic solids. 1997, Vol. 276, pp. 269–273.92. Orava J., Kohoutek T., Wagner T. Chalcogenide glasses: preparation,properties and applications, Chapter: Deposition techniques for chalcogenide thinfilms. б.м. : Woodhead Publishing, 2014. стр. 265‒309.93. Nemec P, Frumar M, Jedelsky J, Jelinek M, Lancok J and Gregora I. Thinamorphous chalcogenide films prepared by pulsed laser deposition.
J. Non-Cryst.Solids. 2002, Vols. 299-302, pp. 1013–1017.94. Musgraves J.D., Carlie N. , Hu J. , Petit L., Agarwal A., Kimerling L.C.,Richardson K.A. Comparison of the optical, thermal and structural properties ofGe–Sb–S thin films deposited using thermal evaporation and pulsed laserdeposition techniques. Acta Materialia. 2011 г., Vol. 59, pр.
5032-5039.95. Zhou K., Chen J., Chen R., Ke X., Zhang T., Shi X., Chen L. Non-epitaxialpulsed laser deposition of Ag2Se thermoelectric. Ceramics International. 2016,Vol. 42, 10, pp. 12490–12495.96. Conde Garridoa J.M., Piarristeguyb A. , Ureñaa M.A., Fontanaa M. et. al.Compositional dependence of the optical properties on amorphousAgx(Ge0.25Se0.75)100 − x thin films. Journal of Non-Crystalline Solids. 2013 г.,Vol. 377, pр.
186–190.97. Nazabala V., Němecb P., Jurdycc A.M., Zhanga S., Charpentiera F. et.al.Optical waveguide based on amorphous Er3+-doped Ga–Ge–Sb–S(Se) pulsed laserdeposited thin films. Thin Solid Films. 2010, Vol. 518, 17, pp. 4941–4947.98. Ross U., Lotnyk A., Thelander E., Rauschenbach B. Microstructure evolutionin pulsed laser deposited epitaxial Ge-Sb-Te chalcogenide thin films. Journal ofAlloys and Compounds. 2016 г., Vol. 676, 15, pр. 582–590.99. Wang L.N., Hu L.Z., Zhang H.Q., Qiu et. al.
Studying the Raman spectra of Agdoped ZnO films grown by PLD. Materials Science in Semiconductor Processing.2011, Vol. 14, 3-4, pp. 274–277.100. Борисова З.У. Халькогенидные полупроводниковые стекла. Ленинград :Издательство ленинградского университета, 1983.114101. Бычков Е.А., Кочемировский В.А. Электрические и термическиесвойства стекол системы Ge-Sb-Se, содержащих Ag. 1988 г., Т.
14, стр. 418422.102. Тверьянович Ю.С., Фокина С.В., Пименов В.В., Томаев В.В.Кристализационно устойчивые, ионпроводящие стеклав системе GeSe2Sb2Se3-AgI. Научное обозрение. Реферативный журнал. 2015 г., Т. 2, стр.170-171.103. Sata N., Eberman K., Eberl K., Maier J.