Диссертация (1150276), страница 17
Текст из файла (страница 17)
V. 14. P. 861–869.34. Yang F., Li X., Zhang W., Pan J., Chen Z. A facile light-emitting-diode inducedfluorescence detector coupled to an integrated microfluidic device for microchipelectrophoresis // Talanta. 2011. V. 84. P. 1099–1106.35. Ghanim M.H., Abdullah M. Z. Integrating amperometric detection withelectrophoresis microchip devices for biochemical assays: Recent developments //Talanta. 2011. V. 85. P.
28–34.11636. Chena G., Lin Y., Wang J. Monitoring environmental pollutants by microchipcapillary electrophoresis with electrochemical detection // Talanta. 2006. V. 68. P.497–503.37. Kitagawa F., Otsuka K. Recent progress in microchip electrophoresis–massspectrometry // Journal of Pharmaceutical and Biomedical Analysis. 2011. V. 55. P.668–678.38.
Guo Sh., Ishimatsu R., Nakano K., Imato T. Automated chemiluminescenceimmunoassay for a nonionic surfactant using a recycled spinning-pausing controlledwashing procedure on a compact disc-type microfluidic platform // Talanta. 2015.V. 133. P. 100–106.39. Guo Sh., Imato T. Fundamental performance of compact disc-type microfluidicplatform // Journal of flow injection analysis. 2013.
V. 30. № 1. Р. 21–27.40. Guo Sh., Imato T. Application of сompact disc-type microfluidic platform tobiochemical and biomedical analysis // Journal of flow injection analysis. 2013. V.30. № 1. Р. 29–35.41. Bhakta S. A., Borba R., Taba Jr M., Garcia C. D., Carrilho E. Determination of nitritein saliva using microfluidic paper-based analytical devices // Analytica ChimicaActa. 2014. V. 809.
P. 117–122.42. Asano H., Shiraishi Y. Development of paper-based microfluidic analytical devicefor iron assay using photomask printed with 3D printer for fabrication of hydrophilicand hydrophobic zones on paper by photolithography // Analytica Chimica Acta.2015. V. 883. P. 55–60.43.
Guan W., Liu M., Zhang C. Electrochemiluminescence detection in microfluidiccloth-based analytical devices // Biosensors and Bioelectronics. 2016. 75. 247–253.44. Huanga Y., Zhao Sh., Shi M., Liu J., Liang H. Competitive immunoassay ofphenobarbital by microchip electrophoresis with laser induced fluorescencedetection // Analytica Chimica Acta. 2011. V.
694. Р. 162–166.45. Liu R., Ishimatsu R., Yahiro M., Adachi Ch., Nakano K., Imato T. Photometric flowinjection determination of phosphate on a PDMS microchip using an optical117detection system assembled with an organic light emitting diode and an organicphotodiode // Talanta. 2015. V. 132. Р. 96–105.46. Беленький Б. Г., Комяк Н. И., Курочкин В. Е., Евстрапов А. А., Суханов В. Л.Микрофлюидныеаналитическиесистемы(Часть2)//Научноеприборостроение. 2000. Т. 10. № 3.
С. 3–16.47. Iliescu C., Taylor H., Avram M., Miao J., Franssila S. A practical guide for thefabrication of microfluidic devices using glass and silicon // Biomicrofluids. 2012.V. 6. P. 1–16.48. Miro M., Hansen E. H. Recent advances and future prospects of mesofluidic Labon-a-Valve platforms in analytical sciences – A critical review // Analytica ChimicaActa. 2012. V.
750. Р. 3–15.49. Ruzicka J., Hansen E. H. Flow injection analyses: Part I. A new concept of fastcontinuous flow analysis // Analytica Chimica Acta. 1975. V. 78. P. 145–157.50. Золотов Ю. А. Сер. Проблемы аналитической химии. Проточный химическийанализ. // М.: Наука. 2014. Т. 17. Гл. 1: Автоматизация химического анализа напринципах проточных методов. – С. 4–32.51. Wang X., Yin X., Cheng H. Microflow injection chemiluminescence system withspiral microchannel for the determination of cisplatin in human serum // AnalyticaChimica Acta.
2010. V. 678. P. 135–139.52. Zhang Zh., He D., Liu W., Lv Y.Chemiluminescence micro-flow-injection analysison a chip // Luminescence. 2005. T. 20. P. 377–381.53. Tsuji K., Hanaoka Y., Hibara A., Tokeshi M., Kitamori T. Total reflection X-rayfluorescence analysis with chemical microchip // Spectrochimica Acta B. 2006. V.61. P. 389–392.54. Kwapiszewski R., Skolimowski M., Ziolkowska K., Jedrych E., Chudy M., DybkoA., Brzozka Z.
A microfluidic device with fluorimetric detection for intracellularcomponents analysis // Biomedical Microdevices. 2011. V. 13. P. 431–440.11855. Xue Sh., Uchiyama K., Li H. Determination of ammonium on an integratedmicrochip with LED-induced fluorescence detection // Journal of environmentalsciences. 2012. V.
24. №3. Р. 564–570.56. Zhao L., Wu T., Lefevre J., Leray I., Delaire J. A. Fluorimetric lead detection in amicrofluidic device // Lab Chip. 2009. V. 9. P.2818–2823.57. Kruanetr S., Liawruangrath S., Youngvises N. A simple and green analytical methodfor determination of iron based on micro flow analysis // Talanta. 2007. V. 73.
P.46–53.58. Liu R., Ishimatsu R., Yahiro M., Adachi Ch., Nakano K., Imato T. Fluorometricflow-immunoassay for alkylphenolpolyethoxylates on a microchip containing afluorescence detector comprised of an organic light emitting diode and an organicphotodiode // Talanta. 2015. V. 134. P. 37–47.59. Prasertboonyai K., Arqueropanyo O., Liawraungrath B., Liawraungrath S.,Pojanakaroon T.
Miniaturization of spectrophotometry based on micro flow analysisusing norfloxacin as less-toxic reagent for iron determination // Spectrochimica ActaPart A: Molecular and Biomolecular Spectroscopy. 2015. V. 151. P. 532–537.60. Булатов А.В., Москвин А.Л., Москвин Л.Н., Вах К.С., Фалькова М.Т., ШишовА.Ю. Автоматизация и миниатюризация химического анализа на принципахпроточных методов (Обзор) // Научное приборостроение. 2015.
V. 25. № 2. С.3–26.61.Abouhiat F. Z., Henriquez C., Horstkotte B., Yousfi F. E., Cerda V. A miniaturizedanalyzer for the catalytic determination of iodide in seawater and pharmaceuticalsamples // Talanta. 2013. V. 108. P. 92–102.62.Phansi P., Henriquez C., Palacio E., Nacapricha D., Cerda V.Automated in-chipkinetic-catalytic method for molybdenum determination // Talanta. 2014.
V. 119. P.68–74.63.Frizzarin R. M., Aguado E., Portugal L. A., Moreno D., Estela J. M., Rocha F. P.,Cerda V. A portable multi-syringe flow system for spectrofluorimetricdetermination of iodide in seawater // Talanta. 2015. V. 144. P. 1155–1162.11964.Ruzicka J., Marshall G. D. Sequential injection: a new concept for chemical sensors,process analysis and laboratory assays // Analytica Chimica Acta. 1990. V. 237. P.329–343.65.Ruzicka J. Lab-on-valve: universal microflow analyzer based on sequential and beadinjection // Analyst. 2000. V. 125.
P. 1053–1060.66.Yua Y., Jiang Y., Hea R. Development of a miniature analytical system in a lab-onvalve for determination of trace copper by bead injection spectroscopy // Talanta.2012. V. 88. P. 352–357.67.Wang J., Hansen E. H. Sequential injection lab-on-valve: the third generation offlow injection analysis // Trends in Analytical Chemistry. 2003. V. 22. № 4. Р. 225–231.68.Naghshineh M., Larsen J., Olsen K.
A green analytical method for rapiddetermination of pectin degree of esterification using micro sequential injection labon-valve system // Food Chemistry doi:10.1016/j.foodchem.2013.11.048.69.Wang Y., Liu Z., Hu X., Cao J., Wang F., Xu Q., Yang Ch. On-line coupling ofsequential injection lab-on-valve to differential pulse anodic stripping voltammetryfor determination of Pb in water samples // Talanta. 2009.
V. 77. P. 1203–1207.70.Economou A. Sequential-injection analysis (SIA): A useful tool for on-linesamplehandling and pre-treatment // Trends in Analytical Chemistry. 2005. V. 24.№ 5. P. 416–425.71.Wang J., Hansen E. H. Coupling on-line preconcentration by ion-exchange withETAAS: A novel flow injection approach based on the use of a renewablemicrocolumn as demonstrated for the determination of nickel in environmental andbiological samples // Analytica Chimica Acta. 2000. V. 424. № 2. P. 223–232.72.Wang J., Hansen E.
H. Coupling sequential injection on-line preconcentration bymeans of a renewable microcolumn with ion-exchange beads with detection byelectrothermal atomic absorption spectrometry comparing the performance ofeluting the loaded beads with transporting them directly into the graphite tube, as120demonstrated for the determination of nickel in environmental and biologicalsamples // Analytica Chimica Acta. 2001. V.
435. P. 331–342.73.Ogata Y., Scampavia L., Carter T. L., Fan E., Turebek F. Automated affinitychromatography measurements of compound mixtures using a lab-on-valveapparatus coupled to electrospray ionization mass spectrometry // AnalyticalBiochemistry. 2004. V. 331. P. 161–168.74.Wang J., Hansen E. H. Interfacing sequential injection on-line preconcentrationusing a renewable micro-column incorporated in a «lab-on-valve» system withdirect injection nebulization inductively coupled plasma mass spectrometry //Journal of Analytical Atomic Spectrometry.
2001. V.16. P. 1349–1355.75.Wu Ch., Scampavia L., Ruzicka J. Micro sequential injection: automated insulinderivatization and separation using a lab-on-valve capillary electrophoresis system// Analyst. 2003. V. 128. P. 1123–1130.76.Miro M., Oliveira H. M., Segundo M.
A. Analytical potential of mesofluidic lab-ona-valve as a front end to column-separation systems // Trends in AnalyticalChemistry. 2011. V. 30. № 1. P. 153–164.77.Avivar J., Ferrer L., Casas M., Cerda V. Lab on valve-multisyringe flow injectionsystem (LOV-MSFIA) for fully automated uranium determination in environmentalsamples // Talanta. 2011.
V. 84. № 5. P. 1221–1227.78. Мак-Махон Дж. Аналитические приборы. Руководство по лабораторным,портативным и миниатюрным приборам. С-Пб.: Профессия, 2009, 352 с.79. Diniz P. H. G. D., Almeida L. F., Harding D. P., Araujo M. C. U. Flow-batchanalysis // Trends in Analytical Chemistry. 2012. V. 35. P. 39–49.80. Acebal C.C., Grünhut M., Sramkova I., Chocholous P., Lista A.G., Sklenarova H.,Solich P., Band B.
S. F. Application of a fully integrated photodegradation-detectionflow-batch analysis system with an on-line preconcentration step for thedetermination of metsulfuron methyl in water samples // Talanta. 2014. V. 129. P.233–240.12181. Monte-Filho S.S., Lima M. B., Andrade S. I. E., Harding D. P., Fagundes Y. N. M.,Santos S.