Диссертация (1150276), страница 18
Текст из файла (страница 18)
R. B., Lemos S. G., Araujo M. C. U. Flow–batch miniaturization // Talanta.2011. V. 86. P. 208–213.82. Lima M.B., Andrade S. I. E., Harding D. P., Pistonesi M. F., Band B. S. F., AraujoM. C. U. Turbidimetric and photometric determination of total tannins in tea usinga micro-flow-batch analyzer // Talanta.
2012. V. 88. P. 717–723.83. Lima M.B., Barreto I. S., Andrade S. I. E., Neta M. S. S., Almeida L. F., Araujo M.C. U. Photometric determination of phosphorus in mineralized biodiesel using amicro-flow-batch analyzer with solenoid micro-pumps // Talanta. 2012. V. 98.P.118–122.84. Anastas P.
T., Warner J. C. Green Chemistry: Theory and Practice, OxfordUniversity Press: New York, 1998, p. 30.85. Карташова А. А., Левин И.С., Танеева А.В., Новиков В.Ф. Проблемы иперспективы развития суперпортативных микроаналитических устройств //Вестник Казанского государственного энергетического университета.
2011. Т.11. № 4. С. 50–60.86. Евстрапов А. А., Лукашенко Т. А., Рудницкая Г. Е., Буляница А. Л., КурочкинВ. Е., Гусев В. С., Иванов О. Г., Беркутова И. Ф., Савицкая А. А.Микрофлюидныечипыизстеклянныхматериалов//Научноеприборостроение. 2012. Т. 22. № 2. С. 27–43.87. Onoshima D., Wang J., Aki M., Arinaga K., Kaji N., Tokeshi M., Fujita Sh.,Yokoyama N., Baba Y. A deep microfluidic absorbance detection cell replicatedfrom a thickly stacked SU-8 dry film resist mold // Analytical Methods. 2012.
V. 4.P. 4368–4372.88. Becker H., Locascio L. E. Polymer microfluidic devices: A review // Talanta. 2002.V. 56. P. 267–287.89. Mecomber J. S., Hurd D., Limbach P. A. Enhanced machining of micron-scalefeatures in microchip molding masters by CNC milling // International Journal ofMachine Tools and Manufacture. 2005. V. 45.
P. 1542–1550.12290. Masters B. C., Garvin T. P., Mitsingas C. M., Ford K. B., Marsha C. P. Design andmanufacture of a microchannel plasma reactor by CNC milling // MicroelectronicEngineering. 2015. V. 136. P. 51–56.91. Поздняков А. О., Евстрапов А. А., Лишевич И. В. Микрофлюидные устройствасточкизрениятехнологииполимерныхкомпозитов//Научноеприборостроение. 2005. Т. 15. № 2. С. 67–71.92. Евстрапов А. А., Лукашенко Т. А., Горный С. Г., Юдин К. В. Микрофлюидныечипы из полиметилметакрилата: метод лазерной абляции и термическогосвязывания// Научное приборостроение. 2005.
Т. 15. № 2. С. 72–81.93. Roberts M. A., Rossier J. S., Bercier P., Girault H. UV laser machined polymersubstrates for the development of microdiagnostic systems // Analytical Chemistry.1997. V. 69. P. 2035–2042.94. Pozo-Ayuso D.F., Alvarez M. C., Villa A. F., Granda M. G., Fernandez-Abedul M.T., Costa-Garcia A., Rodrıguez-Garcia J. Fabrication and evaluation of single- anddual-channel (-design) microchip electrophoresis with electrochemical detection //Journal of Chromatography A.
2008. V. 1180. P.193–202.95. Fantoni G., Tosello G., Gabelloni D., Hansen H. N. Modelling injection mouldingmachines for micro manufacture applications through functional analysis // ProcediaCIRP 2. 2012. P.107–112.96. Gheorghe O. C., Florin T. D., Vlad, Gh. T. Optimization of micro injection moldingof polymeric medical devices using software tools // Procedia Engineering. 2014. V.69. P. 340–346.97. Sortino M., Totis G., Kuljanic E. Comparison of injection molding technologies forthe production of micro-optical devices // Procedia Engineering. 2014.
V. 69. P.1296–1305.98. Erkal J. L., Selimovic A., Gross B. C., Lockwood S. Y., Walton E. L., McNamaraS., Martin R. S., Spence D. M. 3D printed microfluidic devices with integratedversatile and reusable electrodes // Lab on a Chip. 2014. V.
14. P. 2023–2032.12399. Shallan Al .I., Smejkal P., Corban M., Guijt R. M., Breadmore M. C. Cost-effectivethree-dimensional printing of visibly transparent microchips within minutes //Analytical Chemistry. 2014. V. 86. P. 3124−3130.100. Anderson K. B., Lockwood S. Y., Martin R. S., Spence D. M. A 3D printed fluidicdevice that enables integrated features // Analytical Chemistry. 2013.
V. 85.P.5622−5626.101. Уткин В. Н., Исаков М. А., Хапугин О. Е. Сравнение методов химического иионного травления при формировании топологии резистивного слоя чипрезисторов // Современные наукоемкие технологии. 2007. №11. C. 34–37.102.
Золотов Ю.А. Сер. Проблемы аналитической химии. Проточный химическийанализ // М.: Наука. 2014. Т. 17. Гл. 5: Циклический инжекционный анализ. С.163–185.103. Булатов А.В., Москвин А.Л., Москвин Л.Н., Лепилова П.А. Циклическийинжекционный анализ в режиме «лаборатория в реакционной емкости» каквозможность миниатюризации анализа в потоке // Журнал аналитическойхимии. 2011. Т. 66. № 6. С. 658–662.104. Vakh Ch., Freze E., Pochivalov A., Evdokimova E., Kamencev M., Moskvin L.,Bulatov A.Simultaneous determination of iron (II) and ascorbic acid inpharmaceuticas based on flow sandwich technique // Journal of Pharmacological andToxicological Methods.
2015. V. 73. P. 56–62.105. Fulmes Ch.S., Bulatov A.V., Yasakova O.G., Freze E.A., Moskvin A.N., DedkovY.M., Moskvin L.N. Multicommutated stepwise injection analysis as new approachfor simultaneous determination of nickel (II), copper (II) and zinc (II) in wet aerosols// Microchemical Journal. 2013. V.
110. P. 649–655.106. Medinskaia K., Garmonov S., Kozak J., Wieczorek M., Andruch V., Koscielniak P.,Bulatov A. Stepwise injection determination of isoniazid in human urine samplescoupled with generalized calibration method // Microchemical Journal. 2015. V.123. P. 111–117.124107. Bulatov A.V., Petrova A.V., Vishnikin A.B., Moskvin A.L., Moskvin L.N. Stepwiseinjection spectrophotometric determination of epinephrine // Talanta. 2012. V.
96.P. 62–67.108. Bulatov A.V., Petrova A.V., Vishnikin A.B., Moskvin L.N. Stepwise injectionspectrophotometric determination of cysteine in biologically active supplements andfodders // Microchemical Journal. 2013. V. 110. P. 369–373.109. Shishov A., Penkova A., Zabrodin A., Nikolaev K., Dmitrenko M., Ermakov S.,Bulatov A. Vapor permeation-stepwise injection simultaneous determination ofmethanol and ethanol in biodiesel with voltammetric detection // Talanta. 2016.
V.148. P. 666–672.110. Wua H. W., Chen M. L., Shou D., Zh Y. Determination of catecholamines by ionchromatography coupled to acidic potassium permanganate chemiluminescencedetection // Chinese Chemical Letters. 2012. V. 23. 839–842.111. Carrera V., Sabater E., Vilanova E., Sogorb M. A. A simple and rapid HPLC–MSmethod for the simultaneous determination of epinephrine, norepinephrine,dopamine and 5-hydroxytryptamine: Application to the secretion of bovinechromaffin cell cultures // Journal of Chromatography B. 2007. V.
847. P. 88–94.112. Wang Y., Chen Zh. A novel poly(taurine) modified glassy carbon electrode for thesimultaneous determination of epinephrine and dopamine // Colloids and SurfacesB: Biointerfaces. 2009. V. 74. P. 322–327.113. Wei M., Deng-Ming S. Simultaneous determination of epinephrine and dopaminewith poly(L-arginine) modified electrode // Chinese Journal of AnalyticalChemistry. 2007. V. 35.
P. 66–70.114. Государственная фармакопея X издание. М.: Медицина. – 1968.115. Nalewajko E., Wiszowata A., Kojlo A. Determination of catecholamines by flowinjectionanalysisandhigh-performanceliquidchromatographywithchemiluminescence detection // Journal of Pharmaceutical and Biomedical Analysis.2007. V. 43. P. 1673–1681.125116.
Abdulrahman L. K., Al-Abachi A. M., Al-Qaissy M. H. Flow injectionspectrophotometeric determination of some catecholamine drugs in pharmaceuticalpreparations via oxidative coupling reaction with p-toluidine and sodium periodate// Analytica Chimica Acta. 2005. V. 538. P. 331–335.117. Nevado J. J. B., Gallego J. M. L., Laguna P. B. Spectrophotometric determinationof catecholamines with metaperiodate by flow-injection analysis // AnalyticaChimica Acta. 1995. V. 300. P. 293–297.118.
Rivas G. A., Ortiz S. L., Calataud J. M. Simultaneous determination of adrenalineand noradrenaline by first derivative spectrophotometry in a FIA assembly //Analytical Letters. 1996. V. 29. № 2. P. 2115-2124.119. Teixeira M. F. S., Marcolino-Junior L. H., Fatibello-Filho O. Flow injectionspectrophotometric determination of adrenaline in pharmaceutical formulationsusing a solid-phase reactor containing lead(IV) dioxide immobilized in a polyesterresin // Il Farmaco. 2002. V. 57.
P. 215–219.120. Solich P., Polydorou Ch. K., Koupparis M. A., Efstathiou C. E. Automated flowinjection spectrophotometric determination of catecholamines (epinephrine andisoproterenol) in pharmaceutical formulations based on ferrous complex formation// Journal of Pharmaceutical and Biomedical Analysis. 2000. V. 22.
P. 781–789.121. Kusmierek K., Bald E. Reduced and total glutathione and cysteine profiles of citrusfruit juices using liquid chromatography // Food chemistry. 2008. V. 160. P. 340–344.122. Sánchez-Vioque R., Girón-Calle J., Rodriguez-Conde M.F., Vioque J., De-losMozos-Pascual M., Santana-Méridas O., Izquierdo-Melero M.E., Alaiz M.Determination of γ-glutamin-S-ethenyl-cysteine in narbon vetch (Vicia narbonensisL.) seeds by high performance liquid chromatography // Animal Feed Science andTechnology.