Диссертация (1150033), страница 15
Текст из файла (страница 15)
P. 1178-1271.5. Kuila T., Bose S., Mishra A.K., Khanra P., Kim N.H., Lee J.H. Chemicalfunctionalization of graphene and its applications // Prog. Mater. Sci. 2012. V. 57. P.1061-1105.6. Qing Tang, Zhen Zhou. Graphene-analogous low-dimensional materials // Progressin Materials Science. 2013. V.
58. P. 1244-1315.7. Zeng H., Zhi C., Zhang Z., Wei X., Wang X., Guo W. “White Graphenes”: boronnitride nanoribbons via boron nitride nanotube unwrapping // Nano Lett. 2010. V. 10. P.5049-5055.8. Tang Q., Zhou Z., Shen P., Chen Z. Band gap engineering of BN sheets by interlayerdihydrogen bonding and electric field control // Chem.
Phys. Chem. 2013. V. 14. P.1787-1792.9. Cahangirov S., Topsakal M., Akturk E, Sahin H, Ciraci S. Two- and one-dimensionalhoneycomb structures of silicon and germanium // Phys. Rev. Lett. 2009. V. 102.236804. P. (1-5).10. Jose D., Datta A. Understanding of the buckling distortions in silicene // J. Phys.Chem. C 2012. V. 116. 24639. P.
(1-10).11911. Nakano H., Mitsouka T., Harada M., Horibuchi K., Nozaki H., Takahashi N. Softsynthesis of single-crystal silicon monolayer sheets // Angew. Chem. Int. Ed. 2006. V.45. P. 6303-6306.12. Kang J., Wu F., Li J. Symmetry-dependent transport properties andmagnetoresistance in zigzag silicene nanoribbons // Appl. Phys.
Lett. 2012. V. 100.233122 P. (1-4).13. Li H., Wang L., Liu Q., Zheng J., Mei W., Gao Z. High performance silicenenanoribbon field effect transistors with current saturation // Eur. Phys. J. B 2012. V. 85.P. 274-278.14. Hu W., Wu X., Li Z., Yang J. Porous silicene as a hydrogen purification membrane// Phys. Chem. Chem. Phys. 2013. V.
15. P. 5753-5757.15. Radisavljevic B., Radenovic A., Brivio J., Giacometti V., Kis A. Single-layer MoS2transistors // Nat. Nanotechnol. 2011. V. 6. P. 147-150.16. Boker Th., Severin R., Muller A., Janowitz C., Manzke R., Voss D. Band structureof MoS2, MoSe2, and α−MoTe2: Angle-resolved photoelectron spectroscopy and abinitio calculations // Phys.
Rev. B. 2001. V. 64. 235305. P. (1-14).17. Klein A., Tiefenbacher S., Eyert V., Pettenkofer C., Jaegermann W. Electronicband structure of single-crystal and single-layer WS2: Influence of interlayer van derWaals interactions // Phys. Rev. B. 2001. V. 64. 205416. P. (1-14).18.
Andersen A., Kathmann S. M., Lilga M. A., Albrecht K. O., Hallen R.T., Mei D.First-principles characterization of potassium intercalation in hexagonal 2H-MoS2 // J.Phys. Chem. C. 2012. V. 116. P. 1826-1832.19. Mak K.F., Lee C., Hone J., Shan J., Heinz T.F. Atomically thin MoS₂: a new directgap semiconductor // Phys. Rev. Lett. 2010. V.
105. 136805 P. (1-3).20. Kuc A., Zibouche N., Heine T. Influence of quantum confinement on the electronicstructure of the transition metal sulfide TS2 // Phys. Rev. B. 2011. V. 83. P. 245213 (111).12021. Jae Hyo Han, Sujeong Lee, Jinwoo Cheon. Synthesis and structuraltransformations of colloidal 2D layered metal chalcogenide nanocrystals // Chem.
Soc.Rev. 2013. V. 42. P. 2581-2591.22. Barsoum M.W. The MN+1AXN phases: A new class of solids: Thermodynamicallystable nanolaminates // Prog. Solid State Chem. 2000. V. 28. P. 201-281.23. Naguib M., Kurtoglu M., Presser V., Lu J., Niu J., Heon M. Two‐dimensionalnanocrystals produced by exfoliation of Ti3AlC2 // Adv. Mater. 2011. V. 23. P.
42484253.24. Tang Q., Zhou Z., Shen P. Are MXenes promising anode materials for Li Ionbatteries? Computational studies on electronic properties and Li storage capability ofTi3C2 and Ti3C2X2 (X = F, OH) monolayer // J. Am. Chem. Soc. 2012. V. 134. P.16909-16916.25. Khazaei M., Arai M., Sasaki T., Chung C., Venkataramanan N.S., Estili M. Novelelectronic and magnetic properties of two‐dimensional transition metal carbides andnitrides // Adv.
Funct. Mater. 2013. V. 23. P. 2185-2192.26. Naguib M., Mashtalir O., Carle J., Presser V., Lu J., Hultman L. Two-dimensionaltransition metal carbides // ACS Nano. 2012. V. 6. P. 1322-1331.27. Osada M., Sasaki T. Exfoliated oxide nanosheets: new solution to nanoelectronics //J. Mater. Chem. 2009. V. 19. P. 2503-2511.28. Bizeto M. A., Shiguihara A. L., Constantino V. R. L. Layered niobate nanosheets:building blocks for advanced materials assembly // J.
Mater. Chem. 2009. V. 19. P.2512-2525.29.MaR.,LiuZ.,LiL.,IyiN.,SasakiT.Exfoliatinglayereddouble hydroxides in formamide: a method to obtain positively charged nanosheets //J. Mater. Chem. 2006. V. 16. P. 3809-3813.30. Ma R., Sasaki T. Nanosheets of oxides and hydroxides: Ultimate 2D charge-bearingfunctional crystallites // Adv. Mater.2010.
V. 22. P. 5082-5104.31. Sasaki T. Fabrication of nanostructured functional materials using exfoliatednanosheets as a building block // J. Ceram. Soc. Jpn. 2007. V. 115. P. 9-16.12132. Sasaki T., Watanabe M. Semiconductor nanosheet crystallites of quasi-TiO2 andtheir optical properties // J. Phys. Chem. B. 1997. V. 101. P. 10159-10161.33.
Fukuda K., Ebina Y., Shibata T., Aizawa T., Nakai I., Sasaki T. Unusualcrystallization behaviors of anatase nanocrystallites from a molecularly thin titaniananosheet and its stacked forms: Increase in nucleation temperature and orientedgrowth // J. Am. Chem. Soc. 2007. V. 129. P. 202-209.34. Sakai N., Ebina Y., Takada K., Sasaki T.
Electronic band structure of titaniasemiconductor nanosheets revealed by electrochemical and photoelectrochemicalstudies // J. Am. Chem. Soc. 2004. V. 126. P. 5851-5858.35. Saupe G. B., Waraksa C. C., Kim H., Han Y. J., Kaschak D. M., Skinner D. M.,Mallouk T. E. Nanoscale tubules formed by exfoliation of potassium hexaniobate // J.Chem. Mater. 2000. V. 12.
P. 1556-1562.36. Takagaki A., Sugisawa M., Lu D., Kondo J. N., Hara M., Domen K., Hayashi S.Exfoliated nanosheets as a new strong solid acid catalyst // J. Am. Chem. Soc. 2003. V.125. P. 5479-5485.37. Fukuda K., Akatsuka K., Ebina Y., Ma R., Takada K., Nakai I., Sasaki T. Exfoliatednanosheet crystallite of cesium tungstate with 2D pyrochlore structure: Synthesis,characterization, and photochromic properties // ACS Nano 2008. V. 2.
P. 1689-1695.38. Tanaka T., Ebina Y., Takada K., Kurashima K., Sasaki T. Oversized titaniananosheet crystallites derived from flux-grown layered titanate single crystals // Chem.Mater. 2003. V. 15. P. 3564-3568.39.YongHu,HaishengQian,TingMeiJunGuo,Tim WhiteFacilesynthesis of magnetic metal (Mn, Co, Fe, and Ni) oxide nanosheets // Mater. Lett.
2010.V. 64. P. 1095-1098.40. Changming Li, MinWei, David G.Evans, Xue Duan. Recent advances for layereddouble hydroxides (LDHs) materials as catalysts applied in green aqueous media //Catalysis Today 2015. V. 247. P. 163-169.41. Hu G., Wang N., O’Hare D., Davis J.
One-step synthesis and AFM imaging ofhydrophobic LDH monolayers // Chem. Commun. 2006. P. 287-289.12242. Costantino U., Marmottini F., Nocchetti M., Vivani R. New syntheticroutes to hydrotalcite-like compounds − characterisation and properties of the obtainedmaterials // Eur. J. Inorg. Chem. 1998.
V. 10. P. 1439-1446.43. Iyi N., Matsumoto T., Kaneko Y., Kitamura K. A novel synthetic route to layereddouble hydroxides using hexamethylenetetramine // Chem. Lett. 2004. V. 33. P. 11221123.44. Iyi N., Matsumoto T., Kaneko Y., Kitamura K. Deintercalation of carbonate ionsfrom a hydrotalcite-like compound: Enhanced decarbonation using acid−salt mixedsolution // Chem. Mater. 2004.
V. 16. P. 2926-2932.45. Iyi N., Okamoto K., Kaneko Y., Matsumoto T. Effects of anion species ondeintercalation of carbonate ions from hydrotalcite-like compounds // Chem. Lett. 2005.V. 34. P. 932-933.46. Ma R., Takada K., Fukuda K., Iyi N., Bando Y., Sasaki T. Topochemicalsynthesis of monometallic (Co2+-Co3+) layered double hydroxide and its exfoliation intopositively charged Co(OH)2 nanosheets // Angew.
Chem. Int. Ed. 2008. V. 47. P. 86-89.47. Liang J., Ma R., Iyi N., Ebina Y., Takada K., Sasaki T. Topochemical synthesis,anion exchange, and exfoliation of Co−Ni layered double hydroxides: A route topositively charged Co−Ni hydroxide nanosheets with tunable composition // Chem.Mater. 2010. V. 22. P. 371-378.48. Geng F., Matsushita Y., Ma R., Xin H., Tanaka M., Iyi N., Sasaki T. Synthesis andproperties of well-crystallized layered rare-earth hydroxide nitrates from homogeneousprecipitation // Inorg. Chem. 2009.
V. 48. P. 6724-6730.49. Geng F., Ma R., Sasaki T. Anion-exchangeable layered materials based on rareearth phosphors: Unique combination of rare-earth host and exchangeable anions // Acc.Chem. Res. 2010. V. 43. P. 1177-1185.50. Hindocha S. A., McIntyre L. J., Fogg A. M. Precipitation synthesis of lanthanidehydroxynitrate anion exchange materials, Ln2(OH)5NO3·H2O (Ln: Y, Eu—Er) // J. SolidState Chem. 2009. V.
182. P. 1070-1074.12351. Lee B.-I., Lee K. S., Lee J. H., Lee I. S., Byeon S.-H. Synthesis of colloidal aqueoussuspensions of a layered gadolinium hydroxide: a potential MRI contrast agent // DaltonTrans. 2009. V. 14. P. 2490-2495.52. Fei Wang, Jung-Hun Seo, Guangfu Luo, Matthew B. Starr, Zhaodong Li, DalongGeng, Xin Yin,Shaoyang Wang, Douglas G. Fraser, Dane Morgan, Zhenqiang Ma.Nanometre-thick single-crystalline nanosheets grown at the water-air interface // Nat.Commun.