Диссертация (1149385), страница 27
Текст из файла (страница 27)
Characterization of free standing GaN grown by HVPE on a LiAlO 2 substrate //Phys. Status Solidi. 2006. Vol. 203, № 7. P. 1663–1666.129161. Saarinen K. et al. Observation of Native Ga Vacancies in GaN by Positron Annihilation // Phys.Rev. Lett. 1997. Vol. 79. P. 3030–3033.162. Xu F.J. et al. Different origins of the yellow luminescence in as-grown high-resistance GaN andunintentional-doped GaN films // J. Appl. Phys. 2010. Vol.
107, № 2. P. 23528.163. Zhang R., Kuech T.F. Hydrogen induced yellow luminescence in GaN grown by halide vaporphase epitaxy // J. Electron. Mater. 1998. Vol. 27, № 5. P. L35–L39.164. Reurings F., Tuomisto F. Interplay of Ga vacancies, C impurities, and yellow luminescence inGaN // Proc. SPIE. 2007. Vol.
6473. P. 64730M–64730M–8.165. Lyons J.L., Janotti A., Van de Walle C.G. Effects of carbon on the electrical and opticalproperties of InN, GaN, and AlN // Phys. Rev. B. 2014. Vol. 89, № 3. P. 35204.166. Reshchikov M.A. et al. Carbon defects as sources of the green and yellow luminescence bandsin undoped GaN // Phys. Rev. B. 2014. Vol. 235203.
P. 1–16.167. Demchenko D.O., Diallo I.C., Reshchikov M.A. Yellow luminescence of gallium nitridegenerated by carbon defect complexes // Phys. Rev. Lett. 2013. Vol. 110, № 8. P. 1–5.168. Voronenkov V. et al. Two modes of HVPE growth of GaN and related macrodefects // Phys.Status Solidi C. 2012. Vol. 10, № 3.169.
Yonenaga I. Hardness of bulk single-crystal GaN and AlN // MRS Internet J. Nitride Semicond.Res. 2002. Vol. 7, № 6. P. 1–4.170. Под ред. Калинина Б.А. Физическое материаловедение. т.4. 2008. 696 p.171. Catoor D. et al. Incipient plasticity and deformation mechanisms in single-crystal Mg duringspherical nanoindentation // Acta Mater.
2013. Vol. 61, № 8. P. 2953–2965.172. Weingarten N.S., Chung P.W. A-Type edge dislocation mobility in wurtzite GaN usingmolecular dynamics // Scr. Mater. Acta Materialia Inc., 2013. Vol. 69, № 4. P. 311–314.173. Hsu P.S. et al. Stress relaxation and critical thickness for misfit dislocation formation in (10-10)and (30-3-1) InGaN / GaN heteroepitaxy // Appl. Phys.
Lett. 2012. Vol. 171917, № 100. P. 1–5.174. Wasmer K. et al. Analysis of onset of dislocation nucleation during nanoindentation andnanoscratching of InP // J. Mater. Res. 2011. Vol. 27, № 1. P. 320–329.175. Yakimov E.B., Borisov S.S., Zaitsev S.I. EBIC measurements of small diffusion length //Физика и техника полупроводников. 2007. Vol. 41, № 4. P. 426–428.176. Van der Wegen G.J.L., Bronsveld P.M., De Hosson J.T.M. On the determination of the stackingfault energy from extended nodes in Cu2NiZn // Metall.
Trans. A. 1980. Vol. 11, № 7. P. 1125–1130.177. Tomokiyo Y., Kaku K., Eguchi T. Stacking Fault Energies in a Cu-Al Alloys // J. Japan Inst.Met. 1972. Vol. 36, № 4. P. 329–335.178. Cockayne D., Hons A. Dislocations in semiconductors as studied by weak-beam electron130microscopy // J. Phys. 1979. Vol. 40, № C6. P. 11–18.179. Stevens R. Defects in silicon carbide // J. Mater. Sci. 1972.
Vol. 7, № 5. P. 517–521.180. Milhet X., Demenet J.L., Rabier J. Stacking faults and phase transformations in silicon nitride //Eur. Phys. J. AP. 1998. Vol. 4, № 2.181. Hong M.H., Samant A. V., Pirouz P. Stacking fault energy of 6H-SiC and 4H-SiC singlecrystals // Philos. Mag. A. 2000. Vol. 80, № 4. P. 919–935.182. Soumelidou M.M. et al. Strain and elastic constants of GaN and InN // Comput. Condens.Matter.
Elsevier B.V., 2017. Vol. 10. P. 25–30.183. Jossang T. et al. On the determination of stacking fault energies from extended dislocation nodemeasurements // Acta Metall. 1965. Vol. 13. P. 279–291.184. Stampfl C., Van de Walle C. Energetics and electronic structure of stacking faults in AlN, GaN,and InN // Phys. Rev. B. 1998. Vol. 57, № 24. P. R15052–R15055.185. Zakharov D.
et al. Structural TEM study of nonpolar a-plane gallium nitride grown on(112¯0)4H-SiC by organometallic vapor phase epitaxy // Phys. Rev. B. 2005. Vol. 71, № 23. P.235334.186. Medvedev O.S. et al. Recombination-related properties of a-screw dislocations in GaN: Acombined CL, EBIC, TEM study // AIP Conf. Proc. 2016. Vol. 1748. P. 20011.187. Falkenberg M.A. et al. Localization and preparation of recombination-active extended defectsfor transmission electron microscopy analysis // Rev. Sci. Instrum.
2010. Vol. 81, № 6. P.63705.188. Niermann T. et al. High resolution imaging of extended defects in GaN using wave functionreconstruction // Phys. Status Solidi C. 2007. Vol. 4, № 8. P. 3010–3014.189. Hocker M. et al. Stacking fault emission in GaN: Influence of n-type doping // J. Appl. Phys.2016. Vol. 119, № 18.190. Бир Г.Л., Пикус Г.Е.
Симметрия и деформационные эффекты в полупроводниках. 1972.584 p.191. Wetzel C. et al. Photoluminescence studies of GaN and AlGaN layers under hydrostaticpressure // Proceding Mater. Res. Soc. Symp. 1995. Vol. 378. P. 509–514.192. Cockayne D.J.H., Hons A., Spence J.C.H. Gliding dissociated dislocations in CdS // Philos.Mag. A. 1980.
Vol. 42, № 6. P. 773–781.193. Sun Y.J. et al. Impact of nucleation conditions on the structural and optical properties of Mplane GaN(11̄00) grown on γ-LiAlO // J. Appl. Phys. 2002. Vol. 92, № 10. P. 5714.194. Hirth J.P., Lothe J. Theory of dislocations // New York: McGraw-Hill. 1968. 780 p.195. Malguth E. et al. Structural and electronic properties of Fe3+ and Fe2+ centers in GaN fromoptical and EPR experiments // Phys.
Rev. B - Condens. Matter Mater. Phys. 2006. Vol. 74, №13116. P. 1–12.196. Heikman S. et al. Growth and characteristics of Fe-doped GaN // J. Cryst. Growth. 2003. Vol.248. P. 513–517.197. Fernandez J.R.L. et al. Near band-edge optical properties of cubic GaN with and without carbondoping // Microelectronics J. 2004. Vol. 35, № 1. P. 73–77.198.
Trushin M., Vyvenko O.F. Impact of Electric Field on Thermoemission of Carriers fromShallow Dislocation-Related Electronic States // Solid State Phenom. 2013. Vol. 205–206, №March. P. 299–304.199. Someya T., Akiyama H., Sakaki H. Enhanced Binding Energy of One-Dimensional Excitons inQuantum Wires // Phys.
Rev. Lett. 1996. Vol. 76, № 16. P. 2965–2968.200. Lähnemann J. et al. Coexistence of quantum-confined Stark effect and localized states in an(In,Ga)N/GaN nanowire heterostructure // Phys. Rev. B - Condens. Matter Mater. Phys. 2011.Vol. 84, № 15. P. 1–6.201. Maeda K., Takeuchi S. Enhancement of Dislocation Mobility in Semiconducting Crystals byElectronic Excitation // Dislocations in Solids. 1996. Vol. 30. P. 445–504.202. Audurier V., Demenet J.L., Rabier J. AIN plastic deformation between room temperature and800°C. I. Dislocation substructure observations // Philos.
Mag. A. 1998. Vol. 77, № 4. P. 825–842.203. Delavignette P., Amelinckx S. Dislocation patterns in graphite // J. Nucl. Mater. 1962. Vol. 5,№ 1. P. 17–66.204. Whelan M.J. Dislocation interactions in face-centered cubic metals, with particular reference tostainless steel // Proc. R. Soc.
London. Ser. A. 1959. Vol. 249, № 1256. P. 114–137.205. Yoffe A.D. Advances in Physics Semiconductor quantum dots and related systems : Electronic ,optical , luminescence and related properties of low dimensional systems // Adv. Phys. 2001.Vol. 50, № 1. P. 1–208..