Диссертация (1149385), страница 26
Текст из файла (страница 26)
64, № 11. P. 115204.101. You J., Johnson H. Effect of threading edge dislocations on the photoluminescence spectra forn-type wurtzite GaN // Phys. Rev. B. 2007. Vol. 76, № 11. P. 115336.102. Jain S., Willander M. III–nitrides: Growth, characterization, and properties // J. Appl. Phys.2000. Vol. 87, № 3. P. 965.103. Li G. et al.
GaN-based light-emitting diodes on various substrates: a critical review // ReportsProg. Phys. IOP Publishing, 2016. Vol. 79, № 5. P. 56501.104. Scajev P. et al. Diffusion-limited nonradiative recombination at extended defects in hydridevapor phase epitaxy GaN layers // Appl. Phys. Lett. 2011. Vol. 98, № 20.105. Moram M.A. et al.
On the origin of threading dislocations in GaN films // J. Appl. Phys. 2009.Vol. 106, № 7. P. 73513.106. Cho H.K., Lee J.Y. Formation of Misfit Dislocations and Stacking Faults in High IndiumContent In x Ga 1 − x N Layers Grown by Metalorganic Chemical Vapor Deposition. 2001.Vol. 39, № December. P. 165–169.107. Lu L. et al. Microstructure and origin of dislocation etch pits in GaN epilayers grown by metalorganic chemical vapor deposition // J. Appl. Phys. 2008.
Vol. 104, № 12. P. 123525.108. Sánchez a. M. et al. V-defects and dislocations in InGaN/GaN heterostructures // Thin SolidFilms. 2005. Vol. 479, № 1–2. P. 316–320.109. Bai J. et al. V-shaped pits formed at the GaN/AlN interface // J. Cryst. Growth. 2006. Vol. 289,№ 1.
P. 63–67.110. Shang L. et al. The evolution of a GaN/sapphire interface with different nucleation layerthickness during two-step growth and its influence on the bulk GaN crystal quality // RSC Adv.Royal Society of Chemistry, 2015. Vol. 5, № 63. P. 51201–51207.111. Lee S. et al. Electronic structures of GaN edge dislocations // Phys. Rev. B. 2000. Vol. 61, №12623.
P. 16033–16039.112. Sugahara T. et al. Direct Evidence that Dislocations are Non-Radiative Recombination Centersin GaN // Jpn. J. Appl. Phys. 1998. Vol. 37, № 4A. P. L398.113. Brazel E.G., Chin M. a., Narayanamurti V. Direct observation of localized high current densitiesin GaN films // Appl. Phys. Lett. 1999. Vol. 74, № 16. P. 2367.114.
Polyakov A.Y. et al. Deep electron and hole traps in freestanding n-GaN grown by hydridevapor phase epitaxy // J. Appl. Phys. 2002. Vol. 92, № 9. P. 5241–5247.115. Polyakov A.Y. et al. Characteristics of a-GaN films and a-AlGaN/GaN heterojunctions preparedon r-sapphire by two-stage growth process // J. Appl. Phys. 2011.
Vol. 110, № 9. P. 93709.116. Li D.S. et al. Dependence of leakage current on dislocations in GaN-based light-emitting diodes// J. Appl. Phys. 2004. Vol. 96, № 2. P. 1111–1114.117. In-Hwan L. et al. Electrical and recombination properties and deep traps spectra in MOCVDELOG GaN layers // Phys. Status Solidi C. 2006. Vol. 2090, № 6. P. 2087–2090.118. Elsner J. et al. Theory of Threading Edge and Screw Dislocations in GaN // Phys. Rev. Lett.1997. Vol. 79, № 19. P.
3672–3675.119. Elsner J. et al. Deep acceptors trapped at threading-edge dislocations in GaN // Phys. Rev. B.1998. Vol. 58, № 19. P. 12571–12574.120. Blumenau A.T. et al. A theoretical investigation of dislocations in cubic and hexagonal galliumnitride // Phys. Status Solidi. 2003. Vol. 1709, № 6. P. 1684–1709.121. Belabbas I.
et al. Atomistic modeling of the (a+c)-mixed dislocation core in wurtzite GaN //Phys. Rev. B. 2007. Vol. 75, № 11. P. 115201.122. Savini G. et al. Structure and energy of partial dislocations in wurtzite-GaN // Phys. StatusSolidi. 2007. Vol. 4, № 8. P. 2945–2949.123. Wright A.F., Grossner U. The effect of doping and growth stoichiometry on the core structureof a threading edge dislocation in GaN // Appl. Phys. Lett. 1998.
Vol. 73, № 1998. P. 2751–2753.124. Northrup J.E. Screw dislocations in GaN: The Ga-filled core model // Appl. Phys. Lett. 2001.Vol. 78, № 16. P. 2288.125. Hsu J.W.P. et al. Direct imaging of reverse-bias leakage through pure screw dislocations in GaNfilms grown by molecular beam epitaxy on GaN templates // Appl.
Phys. Lett. 2002. Vol. 81, №1. P. 79–81.126. Polyakov A.Y., Lee I.-H. Deep traps in GaN-based structures as affecting the performance ofGaN devices // Mater. Sci. Eng. R Reports. Elsevier B.V., 2015. Vol. 94. P. 1–56.127. Fang Z.Q. et al. Evolution of deep centers in GaN grown by hydride vapor phase epitaxy //Appl. Phys. Lett. 2001. Vol. 78, № 3. P. 332–334.127128. Govorkov A. V et al. Identification of Dislocations and Their Influence on the Recombinationof Charge Carriers in Gallium Nitride // J.
Surf. Investig. X-ray, Synchrotron Neutron Tech.2007. Vol. 1, № 4. P. 380–385.129. Polyakov A.Y. et al. Deep hole traps in n-GaN films grown by hydride vapor phase epitaxy // J.Appl. Phys. 2002. Vol. 91, № 2002. P. 6580–6584.130. Tokuda Y. et al. DLTS study of n-type GaN grown by MOCVD on GaN substrates //Superlattices Microstruct. 2006. Vol.
40, № 4–6. P. 268–273.131. Duc T.T. et al. Investigation of deep levels in bulk GaN material grown by halide vapor phaseepitaxy // J. Appl. Phys. 2013. Vol. 114, № 2013. P. 8–13.132. Karpov S.Y., Makarov Y.N. Dislocation effect on light emission efficiency in gallium nitride //Appl. Phys.
Lett. 2002. Vol. 81, № 25. P. 4721–4723.133. Rosner S.J. et al. Correlation of cathodoluminescence inhomogeneity with microstructuraldefects in epitaxial GaN grown by metalorganic chemical-vapor deposition // Appl. Phys. Lett.1997. Vol. 70, № 4. P. 420.134. Weyher J.L. et al. Orthodox etching of HVPE-grown GaN // J. Cryst. Growth. 2007. Vol. 305,№ 2 SPEC. ISS. P. 384–392.135. Yamamoto N. et al. Cathodoluminescence characterization of dislocations in gallium nitrideusing a transmission electron microscope // J. Appl.
Phys. 2003. Vol. 94, № 7. P. 4315–4319.136. Schmidt G. et al. Nanoscale cathodoluminescence of stacking faults and partial dislocations ina-plane GaN // Phys. Status Solidi Basic Res. 2016. Vol. 253, № 1. P. 73–77.137. Huang J. et al. Dislocation cross-slip in GaN single crystals under nanoindentation // Appl.Phys.
Lett. 2011. Vol. 98. P. 1–7.138. Shreter Y.G. et al. Dislocation Luminescence in Wurtzite GaN // Cambridge Journals OnlineAU. 1996. Vol. 449.139. Reshchikov M.A. et al. Manifestation of edge dislocations in photoluminescence of GaN //Phys. B Condens. Matter. 2005. Vol. 367, № 1–4. P. 35–39.140. Reshchikov M.A., Morkoç H. Luminescence properties of defects in GaN // J. Appl. Phys.2005. Vol. 97, № 6. P. 61301.141. Reshchikov M.A. et al. No Title // Mater. Res. Soc. Symp. Proc. 2004. Vol.
798. P. Y5.66.142. Liu R. et al. Luminescence from stacking faults in gallium nitride // Appl. Phys. Lett. 2005. Vol.86, № 2. P. 21908.143. Corfdir P. et al. Stacking faults as quantum wells in nanowires: Density of states, oscillatorstrength, and radiative efficiency // Phys. Rev. B. 2014. Vol. 90, № 19. P. 195309.144. Lähnemann J. et al.
Direct experimental determination of the spontaneous polarization of GaN //Phys. Rev. B. 2012. Vol. 86, № 8. P. 81302.128145. Tischer I. et al. I2 basal plane stacking fault in GaN: Origin of the 3.32 eV luminescence band //Phys. Rev. B. 2011. Vol.
83, № 3. P. 35314.146. Corfdir P. et al. Electron localization by a donor in the vicinity of a basal stacking fault in GaN// Phys. Rev. B - Condens. Matter Mater. Phys. 2009. Vol. 80, № 15. P. 1–4.147. Fernandez J.R.L. et al. Near band-edge optical properties of cubic GaN // Solid State Commun.2003. Vol. 125, № 3–4. P. 205–208.148. Yang H. et al.
Cubic-phase GaN light-emitting diodes // Appl. Phys. Lett. 1999. Vol. 74, № 17.P. 2498.149. Rebane Y.T., Shreter Y.G., Albrecht M. Stacking faults as quantum wells for excitons inwurtzite GaN // Phys. Status Solidi. 1997. Vol. 164. P. 141.150. Corfdir P., Lefebvre P. Importance of excitonic effects and the question of internal electricfields in stacking faults and crystal phase quantum discs: The model-case of GaN // J.
Appl.Phys. 2012. Vol. 112, № 5. P. 53512.151. Yonenaga I. et al. Photoluminescence properties of GaN with dislocations induced by plasticdeformation // J. Electron. Mater. 2006. Vol. 35, № 4. P. 717–721.152. Huang J. et al. Dislocation luminescence in GaN single crystals under nanoindentation //Nanoscale Res. Lett. 2014. Vol. 9, № 649. P.
1–7.153. Медведев О.С., Вывенко О.Ф., Бондаренко А.С. Люминесценция свежевведенных a винтовых дислокаций в низкоомном GaN // Физика и техника полупроводников. 2015.Vol. 49, № 9. P. 1217–1222.154. Medvedev O., Vyvenko O., Bondarenko A. Thermal stability of DRL in n-GaN // Phys. StatusSolidi C. 2017. Vol. 1700111. P. 1–4.155. Shockley W., Read W.T. Statistics of the Recombination of Holes and Electrons // Phys. Rev.1952. Vol. 87, № 46.
P. 835–842.156. Kim G. et al. Extraction of recombination coefficients and internal quantum efficiency of GaNbased light emitting diodes considering effective volume of active region // Opt. Express. 2014.Vol. 22, № 2. P. 1235–1242.157. Ino N., Yamamoto N. Low temperature diffusion length of excitons in gallium nitride measuredby cathodoluminescence technique // Appl. Phys.
Lett. 2008. Vol. 93, № 23.158. Yakimov E.B. Electron beam induced excess carrier concentration. 2017. Vol. 1600266, № 7. P.2–5.159. Katsikini M. et al. Comparison of Fe and Si doping of GaN: An EXAFS and Raman study //Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 2011. Vol. 176, № 9. P. 723–726.160. Wang L. et al.