Диссертация (1149385), страница 25
Текст из файла (страница 25)
Sol. 1978. Vol. 289. P. 289–293.53.Shikin V.B., Shikina N.I. Charged dislocations in semiconductors // Phys. Status Solidi. 1988.Vol. 108, № 2. P. 669–681.54.Rebane Y.T., Steeds J.W. Hole bound states in deformation field of screw dislocations in cubicsemiconductors // Phys. Rev. B. 1993. Vol. 48, № 20.
P. 963–972.55.Claesson A. Effect of disorder and long range strain field on the electron states // J. Phys. 1979.Vol. C6. P. 39–41.56.Farvacque J.L., Pödör B. Dislocation Bound States in Compound Semiconductors // Phys.Status Solidi. 1991. Vol.
167, № 2. P. 687–695.57.Farvacque J.L., Franc P. Numerical determination of one-dimensional energy bands bound todislocations // Phys. B Condens. Matter. 1999. Vol. 274. P. 995–998.58.Albrecht M., Lymperakis L., Neugebauer О. Origin of the unusually strong luminescence of a type screw dislocations in GaN // Phys. Rev. B. 2014. Vol. 241201, № 90. P. 1–4.59.Belabbas I. et al. Core properties and mobility of the basal screw dislocation in wurtzite GaN: adensity functional theory study // Model. Simul. Mater. Sci. Eng. IOP Publishing, 2016. Vol.
24,№ 7. P. 75001.60.Lehto N. Shallow electron states of bounded intrinsic stacking faults in silicon // Phys. Rev. B.1997. Vol. 55, № 23. P. 15601–15607.61.Гражулис В.А., Осипьян Ю.А. Элекронный парамагнитный резонанс в пластическидеформированном кремнии // Журнал экспериментальной и теоретической физики. 1970.Vol. 58. P. 1259.62.Kveder V.
V et al. The Effect of Annealing and Hydrogenation on the Dislocation Conductionin Silicon // Phys. Status Solidi. 1985. Vol. 87. P. 657–665.63.Lang D. V. Deep-level transient spectroscopy: A new method to characterize traps insemiconductors // J. Appl. Phys. 1974. Vol. 45, № 7. P. 3023.64.Trushin M. et al. Electrical characterization of silicon wafer bonding interfaces by means ofvoltage dependent light beam and electron beam induced current and capacitance of Schottkydiodes // Phys.
Status Solidi. 2011. Vol. 8, № 4. P. 1371–1376.65.Trushin M. et al. Giant Poole-Frenkel effect for the shallow dislocation-related hole traps insilicon // J. Phys. Conf. Ser. 2011. Vol. 281. P. 12009.66.Kveder V. V. et al. On the Energy Spectrum of Dislocations in Silicon // Phys. Status Solidi.1982. Vol. 72, № 2. P. 701–713.67.Cavalcoli D., Cavallini A.
Electronic states related to dislocations in silicon // Phys. Status123Solidi Curr. Top. Solid State Phys. 2007. Vol. 4, № 8. P. 2871–2877.68.Kveder V., Kittler M., Schröter W. Recombination activity of contaminated dislocations insilicon: A model describing electron-beam-induced current contrast behavior // Phys. Rev. B.2001. Vol. 63, № 11. P. 115208.69.Vyvenko O.F. et al. X-ray beam induced current - A synchrotron radiation based technique forthe in situ analysis of recombination properties and chemical nature of metal clusters in silicon// J. Appl.
Phys. 2002. Vol. 91, № 6. P. 3614–3617.70.Vyvenko O.F. et al. X-ray beam induced current/microprobe x-ray fluorescence: synchrotronradiation based x-ray microprobe techniques for analysis of the recombination activity andchemical nature of metal impurities in silicon // J. Phys. Condens. Matter. 2004. Vol. 16. P.S141–S151.71.Feklisova O. V., Yakimov E.B., Yarykin N. Contribution of the disturbed dislocation slip planesto the electrical properties of plastically deformed silicon // Phys. B Condens.
Matter. 2003.Vol. 340–342. P. 1005–1008.72.Feklisova O.V., Pichaud B., Yakimov E.B. Annealing effect on the electrical activity ofextended defects in plastically deformed p-Si with low dislocation density // Phys. Status SolidiAppl. Mater. Sci. 2005. Vol. 202, № 5. P. 896–900.73.КравченкоВ.Я.Cпектрфотолюминесценциивпластическидеформированныхполупроводниках и электронные состояния на расщепленных дислокациях // Журналэкспериментальной и теоретической физики. 1995. Vol. 107, № 6.
P. 2048.74.Sauer R. et al. Dislocation-related photoluminescence in silicon // Appl. Phys. A SolidsSurfaces. 1985. Vol. 36, № 1. P. 1–13.75.Izotov A.N. et al. Photoluminescence and splitting of dislocation in germainum // Phys. StatusSolidi. 1992. Vol. 130. P. 193.76.Sauer R., Kisielowski-Kemmerich C., Alexander H. Dissociation-width-dependent radiativerecombination of electrons and holes at widely split dislocations in silicon // Phys. Rev. Lett.1986.
Vol. 57, № 12. P. 1472–1475.77.Rebane Y.T., Shreter Y.G. Dislocation-Related Excitons in Semiconductors // Springer Proc.Phys. 1991. Vol. 54. P. 28–39.78.Emtage P.R. Binding of Electrons, Holes, and Excitons to Dislocations in Insulators // Phys.Rev. 1967. Vol. 163, № 3. P. 865–872.79.Steinman E.A., Kveder V., Grimmeiss H.G.
The Mechanisms and Application of DislocationRelated Radiation for Silicon Based Light Sources // Solid State Phenom. 1996. Vol. 47–48. P.217–222.80.Pizzini S. et al. Photoluminescence emission in the 0.7-0.9 eV range from oxygen precipitates,124thermal donors and dislocations in silicon // J.
Phys. Condens. Matter. 2000. Vol. 12, № 49. P.10131–10143.81.Mchedlidze T. et al. Structures responsible for radiative and non-radiative recombinationactivity of dislocations in silicon // Phys. Status Solidi Curr. Top. Solid State Phys. 2011. Vol. 8,№ 3. P. 991–995.82.Mchedlidze T. et al. Determination of the Origin of Dislocation Related Luminescence fromSilicon Using Regular Dislocation Networks // Solid State Phenom. 2009. Vol.
156–158. P.567–572.83.Loshachenko A. et al. Impact of hydrogen on electrical levels and luminescence of dislocationnetwork at the interface of hydrophilically bonded silicon wafers // Phys. Status Solidi Curr.Top. Solid State Phys. 2013.
Vol. 10, № 1. P. 36–39.84.Bondarenko A., Vyvenko O., Isakov I. Identification of dislocation-related luminescenceparticipating levels in silicon by DLTS and Pulsed-CL profiling // J. Phys. Conf. Ser. 2011. Vol.281. P. 12008.85.Kveder V. et al. Room-temperature silicon light-emitting diodes based on dislocationluminescence // Appl.
Phys. Lett. 2004. Vol. 84, № 12. P. 2106–2108.86.Bondarenko A. et al. Dislocation Structure, Electrical and Luminescent Properties ofHydrophilically Bonded Silicon Wafer Interface // Solid State Phenom. 2011. Vol. 178–179. P.233–242.87.Karin T. et al. Optical Visualization of Radiative Recombination at Partial Dislocations in GaAs// arXiv:1606.03306v1 [cond-mat.mtrl-sci]. 2016.88.Myhajlenko S. et al.
Luminescence studies of individual dislocations in II-VI (ZnSe) and III-V(InP) semiconductors // J. Phys. C Solid State Phys. 1984. Vol. 17, № 35. P. 6477–6492.89.Leipner H.S. et al. Dislocation luminescence in cadmium telluride // Scanning Microsc. 1998.Vol. 12, № 1. P. 149–160.90.Galeckas A., Linnros J., Pirouz P. Recombination-induced stacking faults: Evidence for ageneral mechanism in hexagonal SiC // Phys. Rev. Lett. 2006.
Vol. 96, № 2. P. 1–4.91.Ha S. et al. Core structure and properties of partial dislocations in silicon carbide p-i-n diodes //Appl. Phys. Lett. 2003. Vol. 83, № 24. P. 4957–4959.92.Pirouz P. The concept of quasi-Fermi level and expansion of faulted loops in SiC underminority carrier injection // Phys.
Status Solidi Appl. Mater. Sci. 2013. Vol. 210, № 1. P. 181–186.93.Yakimov E.B., Regula G., Pichaud B. Cathodoluminescence and electron beam induced currentinvestigations of stacking faults mechanically introduced in 4H-SiC in the brittle domain // J.Appl. Phys. 2013. Vol. 114, № 8. P. 84903.12594.Maeda K., Takeuchi S.
Recombination enhanced mobility of dislocations in iii-v compounds //J. Phys. 1983. Vol. C4, № 9. P. 375–385.95.Ueda O., Pearton S.J. Materials and reliability handbook for semiconductor optical and electrondevices // Springer. 2013. 1-616 p.96.Maeda K. et al. Electronically induced dislocation glide motion in hexagonal GaN singlecrystals // Phys. B Condens. Matter. 1999. Vol. 273–274.
P. 134–139.97.Yakimov E.B. et al. Movement of basal plane dislocations in GaN during electron beamirradiation // Appl. Phys. Lett. 2015. Vol. 106, № 13. P. 132101.98.Caldwell J.D. et al. On the driving force for recombination-induced stacking fault motion in 4HSiC // J. Appl. Phys. 2010. Vol. 108, № 4.99.Karas G. V. New Developments in Crystal Growth Research. 2005.100. Rodina A. et al. Free excitons in wurtzite GaN // Phys. Rev. B. 2001. Vol.