Диссертация (1149310), страница 19
Текст из файла (страница 19)
— 360 с.47. Холшевников К. В. Асимптотические методы небесной механики. —Л.: Изд. ЛГУ, 1985. — 208 с.48. Холшевников К. В., Титов В. Б. Задача двух тел: Учеб. пособие. —СПб., 2007. — 180 с.49. Холшевников К. В., Санникова Т. Н., Джазмати М. С. К выводууравнений движения в оскулирующих элементах // Вестн. С.Петерб.ун-та. — 2014. — сер. 1, Т. 1(59), вып. 2. — С. 160–164.50. Шор В.
А., Чернетенко Ю. А., Кочетова О. М., Железнов Н. Б.О влиянии эффекта Ярковского на орбиту Апофиса // Астрон. вестник. — 2012. — Т. 46. — С. 131–142.16851. Armellin R., Di Lizia P., Berz M., Makino K. Computing the criticalpoints of the distance function between two Keplerian orbits via rigorousglobal optimization // Celestial Mechanics and Dynamical Astronomy. —2010.
— Vol. 107. — Pp. 377–395.52. Baluyev R. V., Kholshevnikov K. V. Distance between two arbitrary unperturbed orbits // Celestial Mechanics and Dynamical Astronomy. — 2005. —Vol. 91. — Pp. 287–300.53. Battin R. H. An Introduction to the Mathematics and Methods of Astrodynamics.
Revised Edition. — AIAA educ. ser. Reston, Virginia, 1999. —800 p.54. Beletsky V. V. Essays on the motion of celestial bodies. — Basel, Switzerland: Birkhäuser Verlag, 2001. — 372 p.55. Boltz F. W. Orbital motion under continuous radial thrust // Journal ofGuidance, Control, and Dynamics. — 1991. — Vol. 14, No. 3. — Pp. 667–670.56. Boltz F.
W. Orbital motion under continuous tangential thrust // Journalof Guidance, Control, and Dynamics. — 1992. — Vol. 15, No. 6. — Pp. 1503–1507.57. Bombardelli C., Baù G., Peláez J. Asymptotic solution for the two-bodyproblem with constant tangential thrust acceleration // Celestial Mechanics and Dynamical Astronomy. — 2011. — Vol. 110, No. 3.
— Pp. 239–256.58. Bottke W. F., Vokrouhlický D., Rubincam D. P., Nesvorný D. The169Yarkovsky and YORP effects: Implications for asteroid dynamics // Annu.Rev. Earth Planet. Sci. — 2006. — Vol. 34. — Pp. 157–191.59. Chernetenko Yu. A. The Yarkovsky Effect in the Motion of NEAs // ”Protecting the Earth against Collisions with Asteroids and Comet Nuclei”.Proc. Int. Conf. ”Asteroid–Comet Hazard–2009” / St. Petersburg: Nauka.
—2010. — Pp. 289–293.60. Chesley S. R., Ostro S. J., Vokrouhlickỳ D., Čapek D., Giorgini J. D.,Nolan M. C., Margot J-L., Hine A. A., Benner L. AM., Chamberlin A. B.Direct detection of the Yarkovsky effect by radar ranging to asteroid 6489Golevka // Science. — 2003. — Vol.
302, No. 5651. — Pp. 1739–1742.61. Chesley Steven R. Potential impact detection for near-earth asteroids: thecase of 99942 Apophis (2004 MN4) // Asteroids, Comets, Meteors: Proceedings of the 229th Symposium of the International Astronomical Union. —2005. — Pp. 215–228.62. Choueiri E. Y. New dawn for electric rockets // Scientific American. —2009. — Vol. 300, No. 2. — Pp. 58–65.63. Colombo C., Vasile M., Radice G.
Semi-analytical solution for the optimallow-thrust deflection of near-earth objects // Journal of Guidance, Control,and Dynamics. — 2009. — Vol. 32, No. 3. — Pp. 796–809.64. Edward T. Lu and Stanley G. Love. Gravitational tractor for towing asteroids // Nature. — November 2005. — No. 438. — Pp.
177–178.65. Gao Y. Low-thrust interplanetary transfers, including escape and capture170trajectories // Journal of Guidance, Control, and Dynamics. — 2007. —Vol. 30, No. 6. — Pp. 1814–1818.66. Gao Y., Kluever C. A. Analytic orbital averaging technique for computingtangential-thrust trajectories // Journal of Guidance, Control, and Dynamics.
— 2005. — Vol. 28, No. 6. — Pp. 1320–1323.67. Gerhard Beutler. Methods of Celestial Mechanics. Volume I: Physical,Mathematical, and Numerical Principles. — Springer-Verlag Berlin Heidelberg, 2005. — 464 p.68. Gronchi G. F. An algebraic method to compute the critical points of thedistance function between two Keplerian orbits // Celestial Mechanics andDynamical Astronomy. — 2005. — Vol. 93. — Pp.
295–329.69. Hudson J. S., Scheeres D. J. Reduction of low-thrust continuous controlsfor trajectory dynamics // Journal of Guidance, Control, and Dynamics. —2009. — Vol. 32, No. 3. — Pp. 780–787.70. International Launch Services Inc. ILS Proton successfully launchesQuetzsat-1 for SES. —http://www.ilslaunch.com/newsroom/news-releases/ils-proton-successfully-launches-quetzsat-1-ses.71.
InternationalLaunchServicesInc.Quetzsat-1. —http://www.ilslaunch.com/mission-control/mission-quetzsat-1.72. Isayev Y. N., Kunitsyn A. L. To the problem of satellite’s perturbed motionunder the influence of solar radiation pressure // Celestial mechanics. —1972. — Vol. 6, No. 1. — Pp. 44–51.17173. Kechichian J. A. Low-thrust eccentricity-constrained orbit raising // Journal of Spacecraft and Rockets.
— 1998. — Vol. 35, No. 3. — Pp. 327–335.74. Kechichian J. A. Orbit raising with low-thrust tangential acceleration inpresence of Earth shadow // Journal of Spacecraft and Rockets. — 1998. —Vol. 35, No. 4. — Pp. 516–525.75. KelsoT.S.InternationalDesignator2011-054. —http://www.celestrak.com/satcat/2011/2011-054.asp.76. Kholshevnikov K. V. Metric spaces of Keplerian orbits // Celestial Mechanics and Dynamical Astronomy. — 2008. — Vol. 100. — Pp. 169–179.77. Kholshevnikov K.
V., Vassiliev N. N. On the distance function betweentwo Keplerian elliptic orbits // Celestial Mechanics and Dynamical Astronomy. — 1999. — Vol. 75. — Pp. 75–83.78. Kholshevnikov K. V., Vassiliev N. N. Natural metrics in the spaces of elliptic orbits // Celestial Mechanics and Dynamical Astronomy. — 2004. —Vol. 89. — Pp. 119–125.79. Lantoine G., Russell R.
P. Complete closed-form solutions of the Starkproblem // Celestial Mechanics and Dynamical Astronomy. — 2011. —Vol. 109, No. 4. — Pp. 333–366.80. MüllerT.HerschelinterceptsasteroidApophis. —http://www.esa.int/Our_Activities/Space_Science/Herschel_intercepts_asteroid_Apophis.81. NASA. Near Earth Object Program. 101955 Bennu (1999 RQ36). —http://ssd.jpl.nasa.gov/sbdb.cgi?sstr=101955.17282.
NASA. Near Earth Object Program. 101955 Bennu (1999 RQ36) EarthImpact Risk Summary. — http://neo.jpl.nasa.gov/risk/a101955.html.83. NASA.NearEarthObjectProgram.410777(2009FD). —http://ssd.jpl.nasa.gov/sbdb.cgi?sstr=410777.84. NASA. Near Earth Object Program. 410777 (2009 FD) Earth Impact RiskSummary. — http://neo.jpl.nasa.gov/risk/a410777.html.85. NASA.
Near Earth Object Program. 99942 Apophis (2004 MN4). —http://ssd.jpl.nasa.gov/sbdb.cgi?sstr=99942.86. NASA. Near Earth Object Program. 99942 Apophis (2004 MN4) EarthImpact Risk Summary. — http://neo.jpl.nasa.gov/risk/a99942.html.87. Petropoulos A. E. Some analytic integrals of the averaged variational equations for a thrusting spacecraft // Interplanetary Network Progress Report. — 2002. — Vol. 150. — Pp. 1–29.88.
Popova O. P. et al. Chelyabinsk airburst, damage assessment, meteoriterecovery, and characterization // Science. — 2013. — Vol. 342, No. 6162. —Pp. 1069–1073.89. Prussing J. E., Coverstone-Carroll V. Constant radial thrust accelerationredux // Journal of Guidance, Control, and Dynamics. — 1998.
— Vol. 21,No. 3. — Pp. 516–518.90. Rodriguez E. Method for determining steering programs for low thrustinterplanetary vehicles // ARS Journal. — 1959. — Vol. 29, No. 10. —Pp. 783–788.17391. Tallqvist Hj. Die Bewegung eines Massepunktes unter dem Einfluss denSchwere und einer Newtonschen Zentralkraft // Acta Soc. Sci. Fennicae.Nova Ser.
A. — 1927. — Vol. 1, No. 2. — P. 77.92. Tsien H. S. Take-off from satellite orbit // Journal of the American RocketSociety. — 1953. — Vol. 23, No. 4. — Pp. 233–236.93. Vinti J. P. Effects of a constant force on a Keplerian orbit // The Theoryof Orbits in the Solar System and in Stellar Systems. Proceedings fromSymposium No. 25 held in Thessaloniki, August 17-22, 1964. Edited byGeorgios Ioannou Kontopoulos. International Astronomical Union / London: Academic Press. — Vol.
25. — 1964. — Pp. 355–362.94. Zuiani F., Vasile M. Extended analytical formulas for the perturbed Keplerian motion under a constant control acceleration // Celestial Mechanicsand Dynamical Astronomy. — 2015. — Vol. 121, No. 3. — Pp. 275–300.95. Zuiani F., Vasile M., Palmas A., Avanzini G. Direct transcription of lowthrust trajectories with finite trajectory elements // Acta Astronautica. —2012.
— Vol. 72. — Pp. 108–120.174Список иллюстративного материалаСписок иллюстраций1.1 Угол поворота f вектора скорости v до совмещения с трансверсалью. Орты k1, k2 направлены на нас, ортогонально корбитальной плоскости. . . . . . . . . . . . . . . . . . .
. . .1.2 Углы поворота между осями с ортами i, i1; i, i2; i1 , i2. Здесьмы направили орт i по линии узлов, чтобы все три оси лежалив орбитальной плоскости. . . . . . . . . . . . . . . . . . . . .47493.1 Величины A1, A2, A3 в разных масштабах. . . . . . . . . . . . 1103.2 Величина A4 в разных масштабах. . . . . . . . . . . . . . .
. 1104.1 Зависимость e, ω(рад/с), a(м), M̃ = M − M0 − ω0t(рад) отвремени t(c) для указанных на с. 123 начальных данных. . .4.2 Фазовый портрет системы (4.16); V=±0.001, ±0.05, ±0.15,±0.3, ±0.6, ±0.9, ±0.99, ±0.999. . . . . . . . . . . . . . . . .4.3 Зависимость i, σ, Ω − Ω1 от времени t(с) для указанных нас. 123 начальных данных, а также V = −0.0458937, W =10−9м с−2.















