Диссертация (1149156), страница 11
Текст из файла (страница 11)
Ðàññìîòðèì ïðîñòåéøèé ñëó÷àé - àòîì ãåëèÿ ñ äâóìÿ ýëåêòðîíàìè.Âîëíîâàÿ ôóíêöèÿ 1s-ýëåêòðîíà äëÿ ãåëèÿ, çàâèñÿùàÿ îò ïðîñòðàíñòâåííûõ êîîðäèíàò, ñîãëàñíî [78] ìîæåò áûòü ïðåäñòàâëåíà â âèäå:√R1s (r) = 2 a3 e−ar ,(3.41)ãäå a = 1.69 a.u. - ýôôåêòèâíûé çàðÿä ãåëèÿ.Âîëíîâàÿ ôóíêöèÿ 1s-ýëåêòðîíà, çàâèñÿùàÿ îò ïðîñòðàíñòâåííûõ è ñïèíîâûõ ïåðåìåííûõ, ïðåäñòàâëÿåòñÿ â âèäåψ1s,m=± 21 (r, σ) = R1s (r)Y00 (n)χ± 21 (σ)(3.42)Ïîñëå ïîäñòàíîâêè ôóíêöèè (3.41) â âîëíîâóþ ôóíêöèþ (3.42) è ïðèìåíåíèÿâûðàæåíèÿ (3.25) äëÿ ñôåðè÷åñêîé ôóíêöèè, ïîëó÷èì:√1χ± 12 (σ)4π√√1= 2 a3 e−arχ 1 (σ)4π ± 2ψ1s,m=± 12 (r, σ) = R1s (r)(3.43)(3.44)Ýòà âîëíîâàÿ ôóíêöèÿ íîðìèðîâàíà íà åäèíèöó:||ψ1s,m || = 1 .(3.45)Îáîçíà÷èì âîëíîâóþ ôóíêöèþ îò ðàäèàëüíûõ ïåðåìåííûõ ψ1s (r).
Äâóõýëåêòðîííàÿ âîëíîâàÿ ôóíêöèÿ ïðåäñòàâëÿåòñÿ â âèäå äåòåðìèíàíòà, ïîñòðîåííîãî íà îäíîýëåêòðîííûõ ôóíêöèÿõ 1s-ýëåêòðîíà (3.43)1Ψ(1s)2 (r1 σ1 , r2 σ2 ) = √ det{ψ+ 12 (r1 σ1 ), ψ− 21 (r2 σ2 )}(3.46)21= ψ1s (r1 )ψ1s (r2 ) √ det{χ+ 21 (σ1 ), χ− 21 (σ2 )} (3.47)286Äâóõýëåêòðîííàÿ âîëíîâàÿ ôóíêöèÿ, çàâèñÿùàÿ îò êîîðäèíàò:(3.48)Ψ(1s)2 (r1 , r2 ) = ψ1s (r1 )ψ1s (r2 )∫= (2π)−3 dp1 dp2 eip1 r1 eip2 r2 ψ̃1s (p1 )ψ̃1s (p2 ),Ψ̃(1s)2 (p1 , p2 ) = (2π)−3∫(3.49)dr1 dr2 e−ip1 r1 e−ip2 r2 ψ1s (r1 )ψ1s (r2 ).(3.50)Äëÿ îäíîýëåêòðîííîé ôóíêöèè ψ̃(p)ψ̃(p) = (2π)−3/2= (2π)−3/2∫dre−ipr ψ1s (r)∫√dre−ipr 2 a3 e−ar√(3.51)14π(3.52) ñôåðè÷åñêîé ñèñòåìå êîîðäèíàò ïîëó÷èì:ψ̃(p) = (2π)−3/2∫2π∫∞dr r20∫1dφ√d cos(θ) e−ipr cos(θ) 2 a3 e−ar√−101.(3.53)4πÏîñëå èíòåãðèðîâàíèÿ ïî óãëàì θ, φ ïîëó÷èì:√−3/2ψ̃(p) = (2π)2 a3√= (2π)−3/2 2 a3√√12π4π∫∞dr r2 e−ar0112π4π −ip∫∞1(e−ipr − eipr )−ipr(3.54)dr r (e−(a+ip)r − e−(a−ip)r ).
(3.55)0Èíòåãðàë â âûðàæåíèè (3.55) ñâîäèòñÿ ê ñëåäóþùåìó âèäó:∫∞0dr r e−(a±ip)r1=(a ± ip)2∫+∞d[(a ± ip)r] [(a ± ip)r] e−[(a±ip)r] (3.56)011Γ(2)=.=(a ± ip)2(a ± ip)287(3.57)Ïðåîáðàçóåì âûðàæåíèå (3.55), èñïîëüçóÿ çíà÷åíèå èíòåãðàëîâ èç (3.57):√ψ̃(p) = (2π)−3/2 2 a3√= (2π)−3/2 2 a3√−3/2= (2π)2 a3√√√112π4π −ip(11−2(a + ip)(a − ip)2)(3.58)11 −4iap2π4π −ip (a2 + p2 )2(3.59)14a2π 24π (a + p2 )2(3.60)1a5/2 23/2.=π (a2 + p2 )2(3.61)Òåïåðü ïîäñòàâèì ïîëó÷åííîå çíà÷åíèå (3.61) â âûðàæåíèå äëÿ äâóõýëåêòðîííîé âîëíîâîé ôóíêöèè: Ψ̃(1s)2 (p1 , p2 ) (3.50)Ψ̃(1s)2 (p1 , p2 ) = (2π)−3∫dr1 dr2 e−ip1 r1 e−ip2 r2 ψ1s (r1 )ψ1s (r2 )a5/2 23/211a5/2 23/2π (a2 + p21 )2 π (a2 + p22 )25 31−3 a 2= (2π)2π 2 (a2 + p1 )2 (a2 + p22 )2a51= 5 2.π (a + p21 )2 (a2 + p22 )2= (2π)−3(3.62)(3.63)(3.64)(3.65)Ìû ðàññìàòðèâàåì òðåõ÷àñòè÷íóþ ñèñòåìó (ëåãêîå àòîìíîå ÿäðî è äâà ýëåêòðîíà, êîòîðûå èçíà÷àëüíîì ñîñòîÿíèè íàõîäÿòñÿ â àòîìíîì ÿäðå) â öåíòðàëüíîì ïîëå òÿæåëîãî ÿäðà.
Çäåñü rn ðàäèóñ-âåêòîð àòîìíîãî ÿäðà, r1 ,r2 - ðàäèóñ-âåêòîðû ïåðâîãî è âòîðîãî ýëåêòðîíîâ â ñèñòåìå ïîêîÿ ÿäðàèîíà, ρ1 , ρ2 ðàäèóñ-âåêòîðû ïåðâîãî è âòîðîãî ýëåêòðîíîâ â ñèñòåìå ïîêîÿàòîìíîãî ÿäðà.Ñîîòâåòñòâåííî,r1,2 = rn + ρ1,2 .(3.66)Äëÿ óïðîùåíèÿ ôîðìóë ïðè âûâîäå êîìïòîíîâñêîãî ïðîôèëÿ áóäåì îïóñêàòü îïåðàòîð ìåæýëåêòðîííîãî âçàèìîäåéñòâèÿ, ïðåäñòàâëåííûé â (3.18),88òîãäà àìïëèòóäà ïðîöåññà òðàíñôåð èîíèçàöèè áóäåò èìåòü ñëåäóþùèé âèä:∫U = (2π)−3 drn dr1 dr2 ψp+3 (r1 )ψn+3 (r2 )e−ipnf rn∫× dκ1 dκ2 Φ(κ1 , κ2 )eiκ1 ρ1 eiκ2 ρ2 eipni rn eip(r1 +r2 ) ,(3.67)ãäå pni èìïóëüñ ÿäðà â íà÷àëüíîì ñîñòîÿíèè, pnf èìïóëüñ ÿäðà â êîíå÷íîì ñîñòîÿíèè, p - èìïóëüñ ïåðâîãî è âòîðîãî ýëåêòðîíîâ (ïðåäïîëàãàåì, ÷òîîíè îäèíàêîâû) â ñèñòåìå ïîêîÿ òÿæåëîãî ÿäðà, κ1 , κ1 èìïóëüñû ïåðâîãî èâòîðîãî ýëåêòðîíîâ â ñèñòåìå ïîêîÿ àòîìíîãî ÿäðà. Èñïîëüçóÿ ñîîòíîøåíèå(3.66) äëÿ ðàäèóñ-âåêòîðîâ, ïîëó÷èì:∫(3.68)U = (2π)−3 drn dr1 dr2 ψp+3 (r1 )ψn+3 (r2 )e−ipnf rn∫× dκ1 dκ2 Φ(κ1 , κ2 )eiκ1 (r1 −rn ) eiκ2 (r2 −rn ) eipni rn eip(r1 +r2 ) .Ïðîèíòåãðèðóåì ïî ÿäåðíîé ïåðåìåííîé rn è ïîëó÷èì ñëåäóþùåå âûðàæåíèå, ñîäåðæàùåå δ -ôóíêöèþ:∫U = (2π)−3 dr1 dr2 ψp+3 (r1 )ψn+3 (r2 )∫× dκ1 dκ2 Φ(κ1 , κ2 )eiκ1 r1 eiκ2 r2 eip(r1 +r2 )×(2π)3 δrn (pni − pnf − κ1 − κ2 ).(3.69)Ïðè îïðåäåëåíèè àìïëèòóäû U ÷åðåç S-ìàòðèöó [3], çàêîí ñîõðàíåíèÿýíåðãèè èìååò âèä:(b)(b)(k)(k)ϵni − ϵnf = ϵ3 + ϵ4 − ϵ1 − ϵ2 − ϵ1 − ϵ2 .(3.70)Ïðèìåíÿÿ èìïóëüñíîå ïðèáëèæåíèå (κ1,2 ≪ p) ìîæíî çàìåíèòü íà eipr1,2âûðàæåíèå äëÿ ei(κ1,2 +p)r1,2 â (3.69).
Ñîîòâåòñòâåííî, ïîëó÷èì:∫U(IA)=dr1 dr2 ψp+3 (r1 )ψn+3 (r2 )eip(r1 +r2 )∫× dκ1 dκ2 Φ(κ1 , κ2 ) δrn (pni − pnf − κ1 − κ2 ).89(3.71)Çäåñü ìû ïðèìåíÿåì èìïóëüñíîå ïðèáëèæåíèå, òî åñòü ïðåäïîëàãàåì, ÷òîâîëíîâûå ôóíêöèè ýëåêòðîíà â ïîëå èîíà ψp (r1,2 ) çàìåíÿþò ôóíêöèè eipr1,2 .Ñîîòâåòñòâåííî, â èìïóëüñíîì ïðèáëèæåíèè, ìû ìîæåì íàïèñàòü:∫U(IA)=dr1 dr2 ψp+3 (r1 )ψn+3 (r2 )ψp (r1 )ψp (r2 )∫× dκ1 dκ2 Φ(κ1 , κ2 ) δrn (pni − pnf − κ1 − κ2 ).(3.72)Ðàññìîòðèì èíòåãðàë:∫dκ1 dκ2 Φ(κ1 , κ2 )δrn (pni − pnf − κ1 − κ2 ) .Φ =(3.73)Ñäåëàåì çàìåíó ïåðåìåííûõ:K = κ1 + κ2 ,1(K + κ) ,2= 2−3 dKdκκ1 =dκ1 dκ2Φ = 2−3∫κ = κ1 − κ2κ2 =1(K − κ)2(3.74)(3.75)(3.76)11dKdκ Φ( (K + κ), (K − κ))δrn (pni − pnf − K) .
(3.77)22Ââåäåì âåêòîð q , êîòîðûé ðàâåí èçìåíåíèþ èìïóëüñà àòîìíîãî ÿäðà:q = pni − pnf .Òîãäà ïîëó÷èì:∫11Φ(q) = 2dκ Φ( (q + κ), (q − κ))22∫qqΦ =dπ Φ( + π, − π) ,22−3(3.78)(3.79)(3.80)ãäå π = κ/2.Ýòîò èíòåãðàë ðàâåía5 23 2 11Φ =2ππ2a [4a2 + q 2 ]290(3.81)Ââåäåì êîìïòîíîâñêèé ïðîôèëü ñëåäóþùèì îáðàçîì:Ccompton1= (2π)−3j ∫×∫∫dpnfdκ′1 dκ′2 Φ∗ (κ′1 , κ′2 )δrn (pni − pnf − κ1 −(3.82)κ2 )dκ1 dκ2 Φ(κ1 , κ2 )δrn (pni − pnf − κ1 − κ2 )(b)(b)(k)(k)×(2π)δt (ϵ3 + ϵ4 + ϵnf − ϵ1 − ϵ2 − ϵ1 − ϵ2 − ϵni ) ,(3.83)ãäå j ïîòîê(3.84)j = γvÏðîâåäÿ èíòåãðèðîâàíèå ïî κ1 , κ2 , κ′1 , κ′2 è èñïîëüçóÿ âûðàæåíèå äëÿ (3.81):Ccompton1= (2π)−3j∫dpnf Φ∗ (q)Φ(q)(b)(b)(k)(k)×(2π)δt (ϵ3 + ϵ4 + ϵnf − ϵ1 − ϵ2 − ϵ1 − ϵ2 − ϵni ) . (3.85)Ðàñêëàäûâàåì âåêòîð q ïî êîìïîíåíòàì q = q⊥ + q∥ (3.78), ãäå (q⊥ , q∥ ) = 0è q∥ ↑↑ pni .
Çàòåì, ìû ïîëàãàåì, ÷òî |q∥ | = (ϵni − ϵnf )/(γv). Èòàê, ìû ìîæåìíàïèñàòü:(3.86)d3 pnf = d2 q⊥ dq∥ .Ââåäåì(b)qm(b)(k)(k)ϵ3 + ϵ4 − ϵ1 − ϵ2 − ϵ1 − ϵ2=.γv(3.87)Òîãäà âûðàæåíèå äëÿ êîìïòîíîâñêîãî ïðîôèëÿ çàïèøåòñÿ â âèäå:Ccompton1= (2π)−3j∫d2 q⊥ dq∥ Φ∗ (q)Φ(q)(2π)δt (qm γv − q∥ γv) . (3.88)Áåðåì èíòåãðàë ïî q∥ :Ccompton11= (2π)−3 (2π)jγv=∫d2 q⊥ Φ∗ (q)Φ(q)(3.89)11 26 a81(2π)−3 (2π)(2π)2.2 ]3jγv 3π [4a2 + qm(3.90)91q∥ =qmÊîìïòîíîâñêèé ïðîôèëü âûðàæàåòñÿ ñëåäóþùèì êîýôôèöèåíòîì, êîòîðûé çàâèñèò îò ñâîéñòâ ìèøåíè (îò ýôôåêòèâíîãî çàðÿäà ìèøåíè a):Ccompton =1 26 a812 ]3(γv)2 3π [4a2 + qm(3.91)Ïðè íàïèñàíèè óðàâíåíèé (3.67)-(3.70) îïóñêàëñÿ îïåðàòîð ìåæýëåêòðîííîãî âçàèìîäåéñòâèÿ. Åñëè åãî âíåñòè (ñì. âûðàæåíèå 3.18), òî â èòîãå ïîëó÷àåì ñëåäóþùåå âûðàæåíèå äëÿ ñå÷åíèÿ:dσ = Ccompton |T |23.5dp3.(2π)3(3.92)Äâàæäû äèôôåðåíöèàëüíîå è ïîëíîå ñå÷åíèÿ ïðîöåññà êîððåëèðîâàííîé òðàíñôåð èîíèçàöèèÓ÷èòûâàÿ ýôôåêò îò ïîëÿ ìíîãîçàðÿäíîãî èîíà â íà÷àëüíîì ñîñòîÿíèè âèìïóëüñíîì ïðèáëèæåíèè è ïðèìåíÿÿ ïðåîáðàçîâàíèå Ôóðüå, ìîæíî ïðåäñòàâèòü àìïëèòóäó ïåðåõîäà (ïðÿìóþ) â îáùåì âèäå:iSfdi (q⊥ ) = −2πγv∫×∫d3 κ ξa (κ, q − κ)∫d3 r1 d3 r2 (LCoul + LGBI ) ,(3.93)ãäå ξa (κ) ðàñïðåäåëåíèå èìïóëüñîâ ýëåêòðîíîâ â íà÷àëüíîì ñîñòîÿíèè àòîìà â ñèñòåìå ïîêîÿ àòîìà (àòîìíûé êîìïòîíîâñêèé ïðîôèëü) è ÷ëåíû1 (−)†χp (r1 )χ(+)p1 (r1 )r12eiK0 r12 (−)†χp (r1 )α1 χ(+)= −χ†b (r2 )α2 χ(+)(r)2p1 (r1 )p2r12eiK0 r12 − 1 (−)††(+)χp (r1 )χ(+)+ χb (r2 )χp2 (r2 )p1 (r1 )r12LCoul = χ†b (r2 )χ(+)p2 (r2 )LGBI(3.94)îòâå÷àþò êóëîíîâñêîìó âçàèìîäåéñòâèþ è îáîáùåííîìó áðåéòîâñêîìó âçàèìîäåéñâòâèþ, ñîîòâåòñòâåííî.92(+) óðàâíåíèè (3.94) αj ìàòðèöû Äèðàêà j -îãî ýëåêòðîíà (j = 1, 2), χp1 è(+)(1)(2)χp2 ñ p1 = κ⊥ + γ(κz + vεa /c2 )v/v è p2 = q⊥ − κ⊥ + γ(qz − κz + vεa /c2 )v/v(1)îïèñûâàþò äâèæåíèå íà÷àëüíîãî ýëåêòðîíà â ïîëå ìíîãîçàðÿäíîãî èîíà (εa(2)è εa(−) ýíåðãèè ýëåêòðîíà â íà÷àëüíîì àòîìíîì ñîñòîÿíèè), χb è χpâîëíîâûå ôóíêöèè ýëåêòðîíîâ (â ñâÿçàííîì è â íåïðåðûâíîì ñîñòîÿíèÿõ,ñîîòâåòñâåííî) â êîíå÷íîì ñîñòîÿíèè.
q = (q⊥ , qz ) ïåðåäàííûé èìïóëüñ âñòîëêíîâåíèè, ãäå q⊥ è qz = (εp + εb − γεa )/γv ïðîäîëüíàÿ è ïîïåðå÷íàÿ÷àñòè, ñîîòâåòñòâåííî, εb ýòî ýíåðãèÿ çàõâà÷åííîãî ýëåêòðîíà, εp ýíåðãèÿ(1)(2)(1)èñïóùåííîãî ýëåêòðîíà, ïðè÷åì εa = εa + εa , K0 = |εb − γεa − γvκz |/c.Óðàâíåíèÿ (3.93)-(3.94) ïðåäñòàâëåíû â Ôåéíìàíîâñêîé êàëèáðîâêå. Îòìåòèì, ÷òî ïðè êàëèáðîâî÷íîé èíâàðèàíòíîñòè ïîëó÷àþòñÿ îäèíàêîâûå ðåçóëüòàòû ïðè ðàñ÷åòå íå çàâèñèìî îò âûáîðà êàëèáðîâêè (ôåéíìàíîâñêîéèëè êóëîíîâñêîé) [60].Ó÷èòûâàÿ Za ≪ v è ïðåíåáðåãàÿ ýíåðãèåé ñâÿçè ýëåêòðîíîâ â àòîìå ïî(1,2)ñðàâíåíèþ ñ èõ ýíåðãèåé ïîêîÿ εa≈ mc2 , ìû ìîæåì ïîëîæèòü p1 = p2 =mγv è K0 = |εb − γmc2 |/c.Âêëàä îò îáìåííîé äèàãðàììû ('exchange') Sfe i â àìïëèòóäó ïåðåõîäà ìîæåò áûòü ïîëó÷åí èç (3.93)-(3.94) çàìåíîé ýëåêòðîíîâ â íà÷àëüíîì (èëè êîíå÷íîì) ñîñòîÿíèè.
Àìïëèòóäà Sf i äëÿ êîððåëèðîâàííîé òðàíñôåð èîíèçàöèè èìååò âèä Sf i = Sfdi − Sfe i .Äâàæäû äèôôåðåíöèàëüíîå ñå÷åíèå ïî ýíåðãèè è óãëó âûëåòåâøåãî ýëåêòðîíà èìååò âèä:d2 σ=dε sin ϑp dϑ∫∫2πdφpd2 q⊥ |Sf i (q⊥ )|2 ,(3.95)0ãäå ϑp - ïîëÿðíûé óãîë âûëåòåâøåãî ýëåêòðîíà.