Диссертация (1145465), страница 86
Текст из файла (страница 86)
Am. Chem. Soc. 1987. – Vol. 109. – № 11. – P. 3471–3472.[143]Macura S., Huang Y., Suter D., Ernst R. R. Two-Dimentional Chemical Exchange and CrossRelaxation Spectroscopy of Coupled Nuclear Spins // J. Magn. Reson. 1981. – Vol. 43. – № 2.– P. 259–281.403[144]Rance M., Bodenhausen G., Wagner G., Wϋthrich K., Ernst R.R.
A Systematic Approach tothe Suppression of J Cross Peaks in 2D Exchange and 2D NOE Spectroscopy // J. Magn.Reson. 1985. – Vol. 62. – № 3. – P. 497–510.[145]Mirau P. A. Quantitative Interpretation of a Single NOESY Spectrum // J. Magn. Reson. 1988.– Vol. 80. – № 3. – P. 439–447.[146]Genest D., Simorre J. P. Method for Evaluating the Reliability of Distances and RotationalCorrelation Times Deduced from 2D 1H NMR NOESY Experiments // Magn.
Reson. Chem.1990. – Vol. 28. – № 1. – P. 21–24.[147]Borgias B. A., Gochin M., Kerwood D. J., James T. L. Relaxation Matrix Analysis of 2D NMRData // Progress in NMR Spectroscopy. 1990. – Vol. 22. – № 1. – P. 83–100.[148]Ni F. Complete Relaxation Matrix Analysis of Transferred Nuclear Overhauser Effects // J.Magn. Reson. 1992. – Vol. 96. – № 3. – P. 651–656.[149]Macura S.
Full-Matrix Analysis of the Error Propagation in Two-Dimensional ChemicalExchange and Cross-Relaxation Spectroscopy // J. Magn. Reson. Ser. A. 1995. – Vol. 112. – №2. – P. 152–159.[150]Jayalakshmi V., Krishna N. R. Complete relaxation and conformational exchange matrix(CORCEMA) analysis of intermolecular saturation transfer effects in reversibly formingligand-receptor complexes // J. Magn. Reson. 2002. – Vol. 155. – № 1. – P. 106–118.[151]Bothner-By A. A., Noggle J. H. Time development of nuclear Overhauser effects in multispinsystems // J.
Am. Chem. Soc. 1979. – Vol. 101. – № 18. – P. 5152–5155.[152]Moseley H. N. B., Curto E. V., Krishna N. R. Complete Relaxation and ConformationalExchange Matrix (CORCEMA) Analysis of NOESY Spectra of Interacting Systems; TwoDimensional Transferred NOESY // J. Magn. Reson. Ser. B. 1995. – Vol. 108. – № 3. – P.243–261.[153]Richarz R., Wüthrich K. NOE Difference Spectroscopy: A Novel Method for ObservingIndividual Multiplets in Proton NMR Spectra of Biological Macromolecules // J. Magn. Reson.1978. – Vol.
30. – № 1. – P. 147-150.[154]Solomon I. Relaxation processes in two spin system // Phys. Rev. 1955. – Vol. 99. – № 2. – P.559–565.[155]Hubbard P. S. Nuclear Magnetic Relaxation of Three and Four Spin Molecules in Liquid //Phys. Rev. 1958. – Vol. 109. – № 4. – P. 1153–1158.[156]Hubbard P. S. Nuclear Magnetic Resonance and Relaxation of Four Spin Molecules in aLiquid // Phys. Rev. 1962. – Vol. 128. – № 2.
– P. 650–658.[157]Hubbard P. S. Nonexponential Relaxation of Three-Spin Systems in Nonspherical Molecules //404J. Chem. Phys. 1969. – Vol. 51. – № 4. – P. 1647–1651.[158]Shimizu H., Fujiwara S. Nuclear Relaxation Processes of a Nonequivalent Two-Spin System //J. Chem. Phys. 1961. – Vol. 34.
– № 5. – P. 1501–1511.[159]Brutscher B. Principles and Applications of Cross-Correlated Relaxation in Biomolecules //Concepts Magn. Reson. 2000. – Vol. 12. – № 4. – P. 207–229.[160]Ni F. Recent developments in transferred NOE methods // Prog. Nucl. Magn. Reson. Spectrosc.1994. – Vol. 26. – № 6. –P. 517–606.[161]Lee W., Krishna N. Influence of conformational exchange on the 2D NOESY spectra ofbiomolecules existing in multiple conformations // J. Magn. Reson. 1992. – Vol. 98, – № 1.
–P. 36–48.[162]Williamson M. P., Neuhaus D. Symmetry in NOE Spectra // J. Magn. Reson. 1987. – Vol. 72. –№ 2. – P. 369–375.[163]Mackor E. L., C. McLean C. Nuclear Relaxation Processes in Systems of Two Spins // J.Chem. Phys. 1965. – Vol. 42. – № 12. – P. 4254–4261.[164]Kumar A., Wagner G., Ernst R.R., Wϋthrich K. Buildup rates of the nuclear Overhauser effectmeasured by two-dimensional proton magnetic resonance spectroscopy: implication for studiesof protein conformation // J.
Am. Chem. Soc. 1981. – Vol. 103. – № 13. – P. 3654–3658.[165]Redfield A. G. The theory of relaxation processes // Adv. Magn. Reson. 1984. – Vol. 1. – № 1.– P. 1–32.[166]Grad J., Bryant R. G. Nuclear Magnetic Cross-Relaxation Spectroscopy // J. Magn. Reson.1990. – Vol. 90. – № 1. – P. 1–8.[167]Bull T. E. Cross-Correlation and 2D NOE Spectra // J. Magn. Reson.
1987. Vol. 72. – № 3. – P.397–413.[168]Keepers J. W., James T. L. A Theoretical Study of Distance Determination from NMR. TwoDimensional Nuclear Overhauser Effect Spectra // J. Magn. Reson. 1984. – Vol. 57. – № 3. – P.404–426.[169]Skrynnikov N. R., Ernst R.
R. Detection of Intermolecular Chemical Exchange throughDecorrelation of Two-Spin Order // J. Magn. Reson. 1999. – Vol. 137. – № 1. – P. 276–280.[170]Canet D. The NOE Factor in Heteronuclear A{X2}, A{XX'} A{XY} Spin-1/2 Systems //Concepts. Magn. Reson. 1999. – Vol.11. – № 3. – P. 111–119.[171]Boulat B., G. Bodenhausen G. Cross-relaxation in magnetic resonance: An extension of theSolomon equations for a consistent description of saturation // J.
Chem. Phys. 1992. – Vol. 97.– № 9. – P. 6040–6043.[172]Shukla R. Comparison of ROESY and EXSY Methods Using Bloch Equations // Magn. Reson.405Chem. 1996. – Vol. 34. – № 7. – P. 545–553.[173]Engler R. E., Johston E. R., Wade C. G. Dynamic Parameters from Nonselectively Generated1D Exchange Spectra // J. Magn. Reson.
1988. – Vol. 77. – № 2. – P. 377–381.[174]Davis D. G., Bax A. Separation of Chemical Exchange and Cross-Relaxation Effects in TwoDimensional NMR Spectroscopy // J. Magn. Reson. 1985. – Vol. 64. – № 3. – P. 533–535.[175]Kost D. Simultaneous Transfer of Saturation and Overhauser Enhancement in Difference NMRSpectroscopy // J. Magn. Reson. 1989. – Vol. 84. – № 3.
– P. 648–653.[176]Perrin C. L., Dwyer T. J. Application of two-dimensional NMR to kinetics of chemicalexchange // Chem. Rev. 1990. – Vol. 90. – № 6. – P. 935–967.[177]Zwahlen C., Vincent S. J. F., Schwager M., Bodenhausen G. Isolation of selected exchangeprocesses in nuclear magnetic resonance // Chem. Eur. J. 1996. – Vol.
2. – № 1. – P. 45–49.[178]Tropp J. Dipolar relaxation and nuclear Overhauser effects in nonrigid molecules: The effect offluctuating internuclear distances // J. Chem. Phys. 1980. – Vol. 72. – № 11. – P. 6035–6043.[179]Hubbard P. S. Nonexponential Relaxation of Rotating Three-Spin Systems in Molecules of aLiquid // J. Chem. Phys. 1970. – Vol. 52. – № 2.
– P. 563–568.[180]Koning T. M. G., Boelens R., van der Marel G. A., van Boom J. H., Kaptein R. StructureDetermination of a DNA Octamer in Solution by NMR Spectroscopy. Effect of Fast LocalMotions // Biochemistry. 1991. – Vol. 30. – № 15. – P. 3787–3797.[181]Eimer W., Williamson J. R., Boxer S. G., Pecora R. Characterization of the Overall andInternal Dynamics of Short Oligonucleotides by Depolarized Dynamic Light Scattering andNMR Relaxation Measurements // Biochemistry. 1990. – Vol.
29. – № 3. – P. 799–811.[182]Lane A. N., Lefevre J.-F., Jardetzky O. A Method for Evaluating Correlation Times forTumbling and Internal Motion in Macromolecules Using Cross-Relaxation Rate Constantsfrom Proton NMR Spectra // J. Magn. Reson. 1986. – Vol.
66. – № 2. – P. 201–218.[183]Liu H., Thomas P. D., James T. L. Averaging of Cross-Relaxation Rates and Distances forMethyl, Methylene and Aromatic Ring Protons due to Motion or Overlap. Extraction ofAccurate Distances Iteratively via Relaxation Matrix Analysis of 2D NOE Spectra // J. Magn.Reson. 1992. – Vol. 98. – № 1. – P. 163–175.[184]Kessler H., Criesinger C., Lautz J., Müller A., van Gunsteren W.F., Berendsen H.
J. C.Conformational Dynamics Detected by Nuclear Magnetic Resonance NOE Values and JCoupling Constants // J. Am. Chem. Soc. 1988. – Vol. 110. – № 11. – P. 3393–3396.[185]Knüttel A., Balaban R. S. A Novel Approach for the Determination of Fast Exchange Rates // J.Magn. Reson. 1991. – Vol. 95. – № 2. – P. 309–319.[186]Koning T. M. G., Boelens R., Kaptein R. Calculation of Nuclear Overhauser Effect and the406Determination of Proton-Proton Distances in the Presence of Internal Motions // J. Magn.Reson.
1990. – Vol. 90. – № 1. – P. 111–123.[187]Liu H., Banville D. L., Basus V. J., James Th. L. Deriving Accurate Interproton Distances withLimited Knowledge of Scalar Coupling Constants via the CARNIVAL Algorithm. An IterativeComplete-Relaxation-Matrix Approach // J. Magn. Reson. Ser. B. 1995. – Vol. 107. – № 1. – P.51–59.[188]Lane A.
N. The Influence of Spin Diffusion and Internal Motion on NOE Intensities in Proteins// J. Magn. Reson. 1988. – Vol. 78. – № 3. – P. 425–439.[189]Furry W. H. Isotropic Rotational Brownian Motion // Phys. Rev. 1957. Vol. 107. – № 1. – P. 7–13.[190]Andersen N. H., Eaton H. L., Lai X. Quantitative Small Molecule NOESY.
A Practical Guidefor Derivation of Cross-relaxation Rates and Internuclear Distances // Magn. Reson. Chem.1989. – Vol. 27. – № 6. – P. 515–528.[191]Macura S., Farmer B.T. (II), Brown L. R An improved method for the determination of crossrelaxation rates from NOE data // J. Magn. Reson. 1986. – Vol.