Диссертация (1145356), страница 43
Текст из файла (страница 43)
// Econ. Lett. 51, 1996, P. 309–313.[201] Evans L. C. Partial Differential Equations / L. C. Evans. // Volume 19of Graduate Studies in Mathematics. American Mathematical Society, 2ndedition, 2010.[202] Feliz R. A. The optimal extraction rate of a natural resource underuncertainty / R. A. Feliz. // Econ. Lett. 43, 1993, P. 231– 234.[203] Ferenstein E. Z. On some kind of Dynkin’s stopping game / E.
Z. Ferenstein.// Demonstratio Mathematica, 2001, 34, 1, P. 191–197.[204] Fershtman C. Dynamic Duopolistic Competition with Sticky Prices / C.Fershtman, M. Kamien. // Econometrica, 1987, Vol. 55, No. 5. P. 1151–1164.[205] Filar J. A. A regional allocation of world CO2 emission re-ductions / J. A.Filar, P. S. Gaertner. // Mathematics and Computers in Simulation, 1997,43, P. 269–275.Литература332[206] Finkelstein M. Failure rate modelling for reliability and risk / M. Finkelstein.// Springer, 2008, – 290p.[207] Fishburn P.
C. Utility theory for decision making / P. C. Fishburn. – NewYork; London; Sydney; Toronto: Wiley, 1970.[208] Fleming W. H. Deterministic and Stochastic Optimal Control / W. H.Fleming, R. W. Rishel. – New York: Springer-Verlag, 1975.[209] Friedman A. Differential Games / A. Friedman. – Wiley, N.Y., 1971, p. 350.[210] Fudenberg D. Game theory / D.
Fudenberg, J. Tirole. – Mass: MIT Press,1991.[211] Gibbons R. Game Theory for Applied Economists / R. Gibbons. – Princeton,New Jersey: Princ. Univ. Press, 1992.[212] Giri B. C. Recent trends in modeling of deteriorating inventory / B. C. Giri,S. K. Goyal. // European Journal of Operational Research, 2001, Vol. 134,No 1, P. 1–16.[213] Goebel R.
Hybrid dynamical systems / R. Goebel, R. Sanfelice, A. Teel. //IEEE Control Systems Magazine, 29(2), 2009, P. 28–93.[214] Grauer L. V. Strong Nash Equilibrium in Multistage Games / L. V. Grauer,L. A. Petrosjan. // International Game Theory Review, 2002, Vol. 4(3), P.255–264.[215] Gromov D. Differential games with random duration: A hybrid systemsformulation. / D. Gromov, E. Gromova. // In: Petrosyan LA, ZenkevichNA (eds) Contributions to game theory and management, Vol VII, GraduateSchool of Management SPbU, 2014, P. 104–119.Литература333[216] Gromov D. On a Class of Hybrid Differential Games / D.
Gromov, E.Gromova. // Dynamic Games and Applications, 2016.[217] Gromova E. A differential game model for the extraction of non-renewableresources with random initial times: The cooperative and competitive cases/ E. Gromova, Jose Daniel Lopez-Barrientos. // International Game TheoryReview, 2016, Vol. 2, № 18, 1640004, – 19 p.[218] Gromova E. A differential game of pollution control with participationof developed and developing countries / E.
Gromova, K. Plekhanova. //Contributions to Game Theory and Management, 8, 2015, P. 64–83.[219] Gromova E. V. A game-theoretic model of pollution control with asymmetrictime horizons / E. V. Gromova, A. V. Tur, L. I. Balandina. // Contributionsto Game Theory and Management, 2016, Vol. 9, P. 170–179.[220] Gromova E. Control of Information Horizon for Cooperative DifferentialGame of Pollution Control / E. Gromova, O.
Petrosjan. // Proceedings ofthe Stability and Oscillations of Nonlinear Control Systems (Pyatnitskiy’sConference), 2016.[221] Gromova E. V. Differential Game of Pollution Control with RandomTerminal Instants / E. V. Gromova, A. V. Tur. // Abstracts of the tenthInternational Conference on Game Theory and Management (GTM2017), –53 p.[222] Gromova E. Risk and Deviation Measures for a Class of Optimal ControlProblems with Random Time Horizon / E.
Gromova, A. Malakhova, D.Gromov. // 2016 SICE International Symposium on Control Systems, 2016.[223] Gromova E. The Shapley value as a sustainable cooperative solution indifferential games of 3 players / E. Gromova // Recent Advances in GameЛитература334Theory and Applications. Petrosyan, L.A., Mazalov, V.V. (Eds.), Birkhauser,2016, P. 67–89.[224] Halkin H.
Necessary conditions for optimal control problems with infinitehorizons / H. Halkin. // Econometrica: Journal of the Econometric Society,1974, P. 267–272.[225] Harris C. Innovation and natural resources: a dynamic game with uncertainty/ C. Harris, J.
Vickers. // Rand J. Econ. 26(3), 1995, P. 418–430.[226] Hart S. The potential of the Shapley value / S. Hart, A. Mas-Colell. // Essaysin Honor of Lloyd S. Shapley, Alvin E. Roth (Ed.), 1989, P. 127–137.[227] Hart S. The Shapley value / S. Hart. // In Game Theory. J. Eatwell, M.Milgate, P.
Newman (Eds.), Palgrave Macmillan UK, 1989, P. 210–216.[228] Hart S. The Shapley value / S. Hart. // In "The New Palgrave Dictionaryof Economics Second Edition, 2008.[229] Haurie A. A Multigenerational Game Model to Analyze SustainableDevelopment / A. Haurie. // Annals of Operations Research, 2005, V. 137,№ 1, P. 369–386.[230] Haurie A. A note on nonzero-sum differential games with bargaining solutions/ A. Haurie. // Journal of Optimization Theory and Applications, 1976, V.18, N 1, P.
31–39.[231] Haurie A. Differential game models of global environmental management / A.Haurie, G. Zaccour. // Annals of Dynamic Games, Boston, 1994, P. 124–132.[232] Haurie A. Games and dynamic games / A. Haurie. et al. // World ScientificBooks, 2012.Литература335[233] Haurie A. Some Properties of the Characteristic Function and Core ofMultistage Game of Coalitions / A. Haurie. // IEEE Transactions onAutomatic Control, April 1975, P. 238–241.[234] Henley E. J.
Reliability engineering and risk assessment / E. J. Henley, H.Kumamoto. // Prentice-Hall, Inc., 1981.[235] Isaacs R. Differential Games / R. Isaacs. – New York: Wiley, 1965.[236] Jørgensen S. Agreeability and Time Consistency in Linear-State DifferentialGames / S. Jørgensen, G. Martin-Herran, G. Zaccour. // Journal ofOptimization Theory and Applications, Vol.119, № 1, 2003, P.
49–63.[237] Jørgensen S. Developments in Differential Game Theory and NumericalMethods: Economic and Management Applications / S. Jørgensen, G.Zaccour. // Computational Management Science, 2007, Vol. 4, N 2, P. 159–182.[238] Jørgensen S. Feedback Nash equilibria in a problem of optimal fisherymanagement / S. Jørgensen, G. Sorger.
// Journal of Optimization Theoryand Applications, 1990, 64, P. 293–310.[239] Jørgensen S. Inter and intragenerational renewable resource extraction / S.Jørgensen, D. W. Yeung. // Annals of Operations Research, 1999, 88, P.275–289.[240] Jørgensen S. Sustaining Cooperation in a Differential Game of AdvertisingGoodwill Accumulation / S. Jørgensen, E. Gromova. // European Journalof Operational Research, 2016, Vol. 254, № 1, P. 294–303.Литература336[241] Jørgensen S.
Time-Consistent Side Payment in a Dynamic Game ofDownstream Pollution / S. Jørgensen, G. Zaccour. // Journal of EconomicDynamics and Control, Vol. 25, 2001, P. 1973–1987.[242] Kaitala V. Equilibria in a stochastic resource management game underimperfect information / V. Kaitala. // European Journal of OperationalResearch, 71, 1993, P. 439–453.[243] Kaitala V. Sustainable international agreements on greenhouse warming /V. Kaitala, M.
Pohjola. // A game theory study, in Carraro and Filar (eds.),Control and Game Theoretic Models of the Environment, Annals of theInternational Society of Dynamic Games, Vol. II. Boston: Birkhauser, 1995.[244] Kamien Morton I. Limit Pricing and Uncertain Entry / Morton I. Kamien,Nancy L. Schwartz. // Econometrica, Vol.
39, No. 3, (May, 1971), P. 441–454[245] Karlin S. / S. Karlin, R. Restrepo. // In H. Kuhn and A. Tucker, editors,Contributions to the Theory of Games. – N.Y.: Princeton Univ. Press,Princeton, 1957.[246] Karlin S. Reduction of certain classes of games to integral equations / S.Karlin. – N.Y.: Princeton Univ. Press, Princeton, 1953.[247] Karlin S. Mathematical Methods and Theory in Games, Programming andEconomics / S. Karlin. – London: Pergamon Press, 1959, – 840 p.[248] Karp L. Non-constant discounting in continuous time / L. Karp.
// Journalof Economic Theory, 2007, V. 132, P. 557–568.[249] Kidland F. E. Rules rather than decisions: the inconsistency of optimal plans/ F. E. Kidland, E. C. Prescott. // J. of Political Economy, 1977, Vol. 85, P.473–490.Литература337[250] Kohlberg E. On the strategic stability of equilibria / E. Kohlberg, J. F.Mertens. // Econometrica, Vol.
54, 1986, P. 1003–1039.[251] Kostyunin S.. A differential game-based approach to extraction of exhaustibleresource with random terminal instants / S. Kostyunin, A. Palestini, E.Shevkoplyas. // Contributions to Game Theory and Management, 2012, №5, P. 147–155.[252] Kostyunin S. Differential game of resource extraction with random timehorizon and different hazard functions / S. Kostyunin, A. Palestini, E.Shevkoplyas. // Процессы управления и устойчивость: Труды 42-й междунар. науч.
конференции аспирантов и студентов / под ред. А. С. Ерёмина, Н. В. Смирнова. СПб.: Издат. Дом С.-Петерб. гос. ун-та, 2011. С.571–576.[253] Kostyunin S. Y. On a exhaustible resource extraction differential game withrandom terminal instants / S. Y. Kostyunin, A. Palestini, E. V. Shevkoplyas.// Vestnik St. Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., no.3, 2013, P. 73–82.[254] Kostyunin S. On a nonrenewable resource extraction game played byasymmetric firms / S.