Диссертация (1145356), страница 45
Текст из файла (страница 45)
– P. 281–303.[307] Pliska S. R. Introduction to Mathematical Finance: Discrete Time Models /S. R. Pliska. – Blackwell Publishers, 1997.[308] Pliska S. R. Optimal life insurance purchase and consumption/investmentunder uncertain lifetime / S. R. Pliska, J. Ye. // Journal of Banking &Finance, 2007, Vol. 31, N 5, P.
1307–1319.[309] Reddy P. V. A friendly computable characteristic function / P.V. Reddy, G.Zaccour // GERAD Research Report G, 2014, 78.[310] Reddy P. V. Time-consistent Shapley value for games played over event trees/ P.V. Reddy, E. V. Shevkoplyas, G. Zaccour // Automatica, 2013, Vol. 49,№ 6, P. 1521–1527.[311] Riedinger P. An optimal control approach for hybrid systems / P. Riedinger,C.
Iung, F. Kratz. // European Journal of Control, 9(5), 2003, P. 449–458.[312] Rockafellar R. T. Optimization of conditional value-at-risk / R. T.Rockafellar, S. Uryasev. // J. Risk, 2(3),2000, P. 21–41.Литература344[313] Rosenmuller J. The theory of games and markets / J. Rosenmuller.
–Amsterdam, 1981.[314] Rosen J. B. Existence and Uniqueness of Equilibrium Points for Concaven-Person Games / J. B. Rosen. // Econometrica, 33(3), 1965, P. 520–534.[315] Roth A. E. The Shapley value as a von Neumann-Morgenstern utility / A.E. Roth. // Mathematics of operations research, 2, 1977.[316] Royden H L. Real Analysis / H. L. Royden. – Prentice Hall, 3rd edition, 1988.[317] Rubio S. On coincidence of feedback Nash Equilibria and StackelbergEquilibria in economic applications of differential games / S. Rubio.
//Journal of Optimization Theory and Applications, 2006, Vol. 128, N. 1, P.203–221.[318] Sakaguchi M. Competetive prediction of a random variable / M. Sakaguchi,K. Szajowski. // Math. Japonica, 1996, V. 34, N 3, P. 461–472.[319] Schelling T. C. The strategy of conflict / T. C. Schelling – Mass.: HarvardUniversity Press, 1960.[320] Seierstad A. Sufficient conditions in optimal control theory / A. Seierstad,K. Sydsæter. // International Economic Review, 1977, P.
367–391.[321] Selten R. Reexamination of the perfectness concept for equilibrium pointsin extensive games / R. Selten. // International Journal of game theory, 4,1975.[322] Sethi S. P. Optimal control theory: applications to management science andeconomics / S. P. Sethi, G. L. Thompson. – Springer, 2000, – 521 p.[323] Shaikh M. S. On the hybrid optimal control problem: Theory and algorithms/ M.
S. Shaikh, P. E. Caines. // IEEE Transactions on Automatic ControlЛитература34552(9), 2007, P. 1587–1603, corrigendum: IEEE TAC, Vol. 54 (6), 2009, – 1428p.[324] Shapley L. S. A value for n-person games // Contributions to the Theory ofGames II / eds Luce R.D. and Tucker A.W. / L. S. Shapley. – Princeton:N.J. Princeton University Press, 1953, P. 307–317.[325] Shapley L. S.
On balanced sets and cores / L. S. Shapley. // Naval researchlogistics quarterly, 14.4, 1967, P. 453–460.[326] Shapley L. S. Cores of convex games / L. S. Shapley. // International journalof game theory, 1.1, 1971, P. 11–26.[327] Shapley L. S. Stochastic games / L. S. Shapley. // Proc. Nat. Acad.Sci. USA,1953, 39, P. 1095–1100.[328] Shell K. Applications of Pontryagin’s maximum principle to economics.Mathematical Systems Theory and Economics I/II / K.
Shell. – SpringerBerlin Heidelberg, 1969, P. 241–292.[329] Shevkoplyas E. V. A Class of Differential Games with Random TerminalTime / E. V. Shevkoplyas, S. Yu. Kostyunin. // Game Theory andApplications. – New York: Nova Science Publishers, Inc., 2013, Vol. 16, P.177–192.[330] Shevkoplyas E. V. Modeling of Environmental Projects under Conditionof a Random Time Horizon / E.
V. Shevkoplyas, S. Yu. Kostyunin. //Contributions to game theory and management, 2010, Vol. 4, P. 447–459.[331] Shevkoplyas E. V. On the construction of the Characteristic Function inCooperative Differential Games with Random Duration / E. V. Shevkoplyas.// Contributions to Game Theory and Management, 2007, Vol. 1, P. 460–477.Литература346[332] Shevkoplyas E. V. The Shapley Value in cooperative differential games withrandom duration / E. V.
Shevkoplyas. // Advances in Dynamic Games,V. 11., part 4, M. Breton and K. Szajowski (Eds.), Springer’s imprintBirkhauser, Boston, 2011, P. 359–373.[333] Shevkoplyas E. V.. Time-consistency problem under condition of a randomgame duration in resource extraction / E. V. Shevkoplyas. // Contributionsto game theory and management, 2008, Vol. 2, P.
461–473.[334] Shiryaev A. N. Essentials of stochastic finance. Facts, models, theory,Advanced Series on Statistical Science & Applied Probability, 3 / A. N.Shiryaev. – USA: World Scientific Publishing Co, 1999, – 850 p.[335] Shiryaev A. N. Optimal stopping rules, Stochastic Modelling and AppliedProbability, 8 / A. N. Shiryaev. – Berlin: Springer-Verlag, 2008, ISBN: 9783-540-74010-0, – 217 p.[336] Shubik M. Strategy and Market Structure / M. Shubik. – New York: Wiley,1959.[337] Soloviev A.
I. Minimax estimation of value-at-risk under hedging of anAmerican contingent claim in a discrete financial market / A. I. Soloviev.// Contributions to Game Theory and Management, 9, 2016, P. 276–286.[338] Sorger G. Competitive dynamic advertising: a modification of the case game/ G. Sorger. // Journal of Economic Dynamics and Control, 1989, Vol. 13,P.
55–80.[339] Strotz R. H. Myopia and Inconsistency in Dynamic Utility Maximization /R. H. Strotz. // Review of Economic Studies, Vol. 23, 1955.Литература347[340] Subbotina N. N. The method of characteristics for Hamilton-Jacobi equationsand applications to dynamical optimization / N. N. Subbotina. // Journalof math. sciences, Vol. 135, № 3, P. 2955–3091.[341] Taboubi S. Impact of Retailer’s Myopia on Channels’s Strategies / S.Taboubi, G.
Zaccour. // In. Optimal Controls and Differential Games:essays in honor Steffen Jørgensen/ edited by G. Zaccour. Kluwer AcademicPublisher.[342] Van Damme E. E. C. Stability and Perfection of Nash equilibria / E. E. C.Van Damme. – Berlin: Springer-Verlag, 1991, – 215 p.[343] Van Damme E. E. C. A relation between perfect equilibria in extensive formgames and proper equilibria in normal form games / E. E. C. Van Damme.// Intern. J. Game Theory, Vol. 13, 1984, P.
1–13.[344] Van der Ploeg F. Voracious transformation of a common natural resource intoproductive capital / Van der Ploeg F. // International Economic Review,2010, Vol. 51, N. 2, P. 365–381.[345] Vinter R. Optimal control / R. Vinter. – Springer, 2010.[346] Weibull W. A statistical distribution function of wide applicability / W.Weibull. // J. Appl. Mech.-Trans. ASME, 18 (3), 1951, P. 293–297.[347] Wrzaczek S. A differential game of pollution control with overlappinggenerations / S. Wrzaczek, E. Shevkoplyas, S.
Kostyunin. // InternationalGame Theory Review, 2014, Vol. 16, № 3, P. 1–14.[348] Yaari M. E. Uncertain Lifetime, Life Insurance, and the Theory of theConsumer / M. E. Yaari. // The Review of Econimic Studies, 1965, Vol.32, № 2, P. 137–150.Литература348[349] Yanovskaya E. Lexicographical Maximin Core Solutions / E. Yanovskaya.// In: Constructing Scalar-Valued Objective Functions, Lecture Notes inEconomics and Math.
Systems, 450, SpringerVerlag, 1996, P. 250–261.[350] Yanovskaya E. Nonsymmetric consistent surplus sharing methods / E.Yanovskaya. // International Journal of Mathematics, Game Theory andAlgebra, Vol. 14, 2004, № 3, P. 189–203.[351] Yeung D. W. K. A differential game of industrial pollution management / D.W. K. Yeung. // Annals of Operations Research, 1992, 37, P. 297–311.[352] Yeung D.
W. K. An irrational-behavior-proofness condition in cooperativedifferential games / D. W. K. Yeung. // Int. J. of Game Theory Rev, Vol. 9,№ 1, 2007, P. 256–273.[353] Yeung D. W. K. An irrational-behavior-proof condition in cooperativedifferential games / D. W. K. Yeung. // International Game Theory Review(IGTR), 2006, V. 8(4), P. 739–744.[354] Yeung D. W.
K. Cooperative stochastic differential games / D. W. K. Yeung,L. A. Petrosyan. – New York: Springer Verlag, 2006, – 242 p. Yeung D. W.K. Infinite horizon stochastic differential games with branching payoffs / D.W. K. Yeung. // Journal of Optimization Theory and Applications, Vol. 111,№ 2, 2001, P. 445–460.[355] Yeung D. W. K. On differential games with a feedback Nash equilibrium /D. W. K.
Yeung. // Journal of Optimization Theory and Applications, 1994,82, № 1, P. 181–188.[356] Yeung D. W. K. Proportional time-consistent solution in differential games /D. W. K. Yeung, L. A. Petrosyan. // In: Yanovskaya E.B. (ed) InternationalЛитература349Conference on Logic, Game Theory and Social Choice. St Petersburg StateUniversity, 2001, P. 254–256.[357] Yeung D. W.
K. Subgame-consistent Economic Optimization / D. W. K.Yeung, L. A. Petrosyan. – Springer, 2012.[358] Yeung D. W. K. Subgame Consistent Solution of a Cooperative StochasticDifferential Games with Nontransferable Payoffs / D. W. K. Yeung, L. A.Petrosyan. // Journal of Optimization Theory and Applications, 2005, Vol.124, № 3, P. 701–724.[359] Zakharov V.
One approach to allocating damage to environment / V.Zakharov. // System Modelling and Optimization, New York.: Springer-Verl.,1994.[360] Zhukovskii V. I. Lyapunov Functions in Differential Games / V.I. Zhukovskii.– London and New York: Taylor & Francis, 2003, – 281 p.[361] Zhukovskii V.
I. The Vector-Valued Maximin / V.I. Zhukovskii, M.E.Salukvadze – New York ets: Academic Press, 1994, – 404 p.[362] Zyatchin A. V. Strong Equilibrium in Differential games / A. V. Zyatchin.// Contributions to game theory and management, Vol III. Collected paperspresented on the International Conference Game Theory and Management /Editors Leon A. Petrosyjan, Nikolay A.
Zenkevich, SPb.: Graduate School ofmanagement, SPbU, 2010, P. 468–485..