Диссертация (1145356), страница 44
Текст из файла (страница 44)
Y. Kostyunin, A. Palestini, E. V. Shevkoplyas. //SIAM Journal of Optimization Theory and Applications, Vol. 163, No. 2,2014, P. 660–673.[255] Krasovskii A. N. Control under lack of information / A. N. Krasovskii, N. N.Krasovskii. – Birkhauser, Boston, 1995, – 320 p.[256] Krawczyk J. Management of pollution from decentralized agents by thelocal government / J. Krawczyk, G. Zaccour. // International Journal ofEnvironment and Pollution, V.
12, №2/3, 1999, P. 343–357.Литература338[257] Kreps D. M. Structural consistency, consistency and sequential rationality /D. M. Kreps, G. Ramey. // Econometrica, Vol. 55, 1987, P. 1331–1348.[258] Kreps D. M. Game theory and economic modeling / D. M. Kreps. – Oxford:Oxford Univ. Press, 1990.[259] Kuhn H. W. Extensive games and the problem of information / H. W. Kuhn.// Annals of Mathematics Studies, Vol. 28, P. 193–216.[260] Leitmann G. Cooperative and Non-Cooperative Many Players DifferentialGames / G. Leitmann. – N.Y.:Springer-Verlag, 1974.[261] Leitmann G.
Profit maximization through advertising: nonzerosumdifferential game approach / G. Leitmann, W. E. Schmitendorf. // IEEETransactions on Automatic Control, Vol. 23, 1978, P. 645–650.[262] Lunze J. Handbook of hybrid systems control: theory, tools, applications / J.Lunze, F. Lamnabhi-Lagarrigue. – Cambridge: Cambridge University Press,2009.[263] Mangasarian O. Sufficient conditions for the optimal control of nonlinearsystems / O. Mangasarian. // SIAM Journal on Control, 4, 1966, P.
139–152.[264] Marı́n-Solano J. Non-constant discounting in finite horizon: the free terminaltime case / J. Marı́n-Solano, J. Navas. // Journal of Economic Dynamicsand Control, 2009, V. 33, P. 666–675.[265] Marı́n-Solano J. Non-constant discounting and differential games withrandom time horizon / J. Marı́n-Solano, E. V. Shevkoplyas. // Automatica,47(12), 2011, P. 2626–2638.Литература339[266] Masoudi N. A differential game of international pollution control withevolving environmental costs/ Masoudi N., Zaccour G. // Environment andDevelopment Economics 18(06), P.
680–700[267] Mazalov V. V. Dynamic games with optimal stopping / V. V. Mazalov. //Game theory and Applicatoins, 1996, Vol. II. Nova Science Publishers, NewYork, P. 37–46.[268] Mazalov V. Fish wars with many players / V. Mazalov, A. Rettieva. // Int.Game Theory Rev, 2010, V. 12, no. 4, P. 385–405.[269] Mazalov V. V. Games with optimal stopping of Wiener processes / V.
V.Mazalov, S. V. Vinnichenko. // Probability Theory and Applications, 1988,Vol. 33, P. 590–591.[270] McMillan J. Games, Strategies and Managers / J. McMillan. – Oxford:Oxford University Press, 1992.[271] Melikyan A. Solution of a Nonzero-Sum Game via Reduction to a Zero-SumGame / A. Melikyan, G. Olsder, A. Akhmetzhanov. // International GameTheory Review, Vol. 10(4), 2008, P. 437–459.[272] Michel P. On the transversality condition in infinite horizon optimal problems/ P. Michel. // Econometrica, 50(4), 1982, P.
975–985.[273] Mood A. Introduction to the Theory of Probability and Statistics / A. Mood,F. Graybill, D. Boes. // McGraw Hill, 1974.[274] Morari M. Hybrid systems modeling and control / M. Morari, M. Baotic, F.Borrelli. // European Journal of Control 9(2), 2003, P. 177–189.[275] Morozov V. V. On optimal partial hedging in discrete markets / V.
V.Morozov, A. I. Soloviev. // Optimization, 2013, Vol. 62, № 11, P. 1403–1418.Литература340[276] Myerson R. B. Game theory / R. B. Myerson. – Cambridge: Massachusetts,Harvard University Press, 1991.[277] Myerson R. B. Refinements of the Nash equilibrium concept / R. B. Myerson.// International Journal of Game Theory, Vol. 7, 1978, P. 73–80.[278] Nash J. F. Equilibrium points in n-person games / J. F. Nash.
// Proc. Nat.Acad. Sci., USA. Vol. 36, 1950, P. 48–49.[279] Nash J. F. Non-cooperative games / J. F. Nash. // Annals of Mathematics,Vol. 54, 1951, P. 286–295.[280] Nash J. F. Two-person cooperative games / J. F. Nash. // Econometrica,Vol. 21, 1953, P. 128–140.[281] Neumann J. von. Zur Theorie der Gesellschaftsspiele / Neumann J.
von. Zur.// Math. Ann, Vol. 100, 1928.[282] Neumann J. The Theory of Games and Economic Behavior / J. Neumann,O. Morgenstern. – Princeton: Princeton University Press, 1944.[283] Ordeshook P. C. Game theory and political theory: An introduction / P. C.Ordeshook. – Cambridge: Cambridge University Press, 1986.[284] Owen G. Game Theory / G.
Owen. – Emerald Group Publishing Limited;3rd edition, 1995, – 460 p.[285] Parilina E. Approximated cooperative equilibria for games played over eventtrees / E. Parilina, G. Zaccour. // Operations Research Letters, 2015, 43 (5),P. 507–513.[286] Parilina E. Node-consistent core for games played over event trees / E.Parilina, G. Zaccour.
// Automatica, 2015, Vol. 53, P. 304–311.Литература341[287] Parilina E. Price of anarchy in a linear-state stochastic dynamic game /E. Parilina, A. Sedakov, G. Zaccour. // European Journal of OperationalResearch, 2017, DOI: 10.1016/j.ejor.2016.09.025.[288] Parilina E. Stable cooperation in stochastic games / E.
Parilina. // Autom.Remote Control, 76:6, 2015, P. 1111–1122.[289] Peleg B. Introduction to the theory of cooperative games / B. Peleg and P.Sudholter. – Springer, Second ed., 2007, – 328 p.[290] Perles M. A. Superadditive Solution to Nash Bargaining Games / M. A.Perles, M. Mashler. // International Journal of Game Theory, 10, 1981.[291] Perry D.
Function space integration for annuities / D. Perry, W. Stadje. //Insurance: Mathematics and Economics, 2001, Vol. 29, N 1, P. 73–82.[292] Petrosjan L. A. Agreeable solutions in differential games / L. A. Petrosjan.// International Journal of Mathematics, Game Theory and Algebra, Vol. 7,1997, P. 65–177.[293] Petrosjan L. A.
Cooperative solutions for games with random duration / L.A. Petrosjan, E. V. Shevkoplyas. // Game Theory and Applications, 2003,Vol. 9, P. 125–139.[294] Petrosjan L. A Cooperative Stochastic Games / L. A. Petrosjan // Advancesin Dynamic Games, Annals of the International Society of Dynamic Games,Application to Economics, Engineering and Environmental Management, ed.by A. Haurie, S. Muto, L.
A. Petrosjan, T.E.S. Raghavan, 2006, P. 139–146.[295] Petrosjan L. A. Differential Games of Pursuit / L. A. Petrosjan. – Singapore:World Scientific, 1993.Литература342[296] Petrosjan L. Dynamic games with coalitional structures / L. Petrosjan, S.Mamkina. // International Game Theory Review, Vol. 8, 2006, №.2, P. 295–307.[297] Petrosjan L. A. Dynamically stable cooperation and the tenet of transitorycompensation / L. A. Petrosjan, D. W. K. Yeung. // Труды международной конференции, посвященной 75-летию со дня рождения В.И.
Зубова,"Устойчивость и процессы управления – Санкт-Петербург, 2005, Vol. 1, –10 с.[298] Petrosjan L. A. Game Theory / L. A. Petrosjan, N. A. Zenkevich. –Singapore: World Scientific, 1996.[299] Petrosjan L. A. Mathematical Models in Environmental Policy Analysis / L.A. Petrosjan, V. V. Zakharov.
– New York: Nova Science Pbl., 1996.[300] Petrosyan L. Strategic support of Cooperative Solutions in 2-PersonDifferential Games with Dependent Motions / L. Petrosyan, S. Chistyakov.// Contributions to Game Theory and Management, 2013, Vol. 6, P. 388–394.[301] Petrosyan L. Strong Strategic Support of Cooperative Solutions inDifferential Games / L. Petrosyan, S. Chistyakov. // Annals of theInternational Society of Dynamic Games, 2013, Volume 12, P.
99–107.[302] Petrosjan L. A. Subgame consistent cooperative solutions in stochasticdifferential games / L. A. Petrosjan, D. W. K. Yeung. // J. of optimizationtheory and applications, 2004, Vol. 120, № 3, P. 651–666.[303] Petrosjan L. Time-consistent Shapley value allocation of pollution costreduction / L. Petrosjan, G. Zaccour. // Journal of Economic Dynamicsand Control, 27 (3), 2003, P. 381–398.Литература343[304] Petrosjan L. A. The Shapley value for differential games // New Trends inDynamic Games and Applications / eds G.Y. Olsder / L. A.
Petrosjan. –Boston: Birkhauser, 1996.[305] Petrosjan L. A. Strong Nash Equilibrium in Multistage Games / L. A.Petrosjan, L. V. Grauer. // International Game Theory Review, 2002, Vol.4(3), P. 255–264.[306] Petrosjan L. A. The time-consistency problem in nonlinear dynamics //RBCM – J. of the Braz. Soc. Mechanical Sciences, 1997. – Vol. 19. – №2.