Диссертация (1145286), страница 33
Текст из файла (страница 33)
V. Tkachev 1981 Phys.Lett. B 99147; B 101 457(E).[38] K. G. Chetyrkin 1991 Combinatorics of R, R−1 and R∗ operationsand asymptotic expansions of Feynman integrals in the limit of largemomenta and masses (Preprint MPI-Ph/PTh13/91).[39] P. A. Baikov, K. G. Chetyrkin and J. H. Kühn, Nucl. Part. Phys. Proc.261-262 3 [arXiv:1501.06739 [hep-ph]].[40] G. ’t Hooft, Dimensional regularization and the renormalization group,Nucl. Phys. B61 (1973) 455–468.[41] F. C. S. Brown, Commun.
Math. Phys. 287 (May, 2009) pp. 925–958.[42] F. C. S. Brown, “On the periods of some Feynman integrals.” preprint,Oct., 2009.[43] N. Nakanishi, Progress of Theoretical Physics Supplement 18 (1961)pp. 1–81.[44] N. Nakanishi, Graph theory and Feynman integrals, vol. 11 ofMathematics and its applications. Gordon and Breach, New York, 1971.[45] C.
Bogner and F. C. S. Brown, Communications in Number Theoryand Physics 9 (2015), no. 1 pp. 189–238.[46] C. Bogner, Comput. Phys. Commun. 203 (2016) pp. 339–353.[47] E. Panzer, Feynman integrals and hyperlogarithms. PhD thesis,Humboldt-Universität zu Berlin, 2014. arXiv:1506.07243 [math-ph].[48] E. Panzer, Nucl. Phys. B 874 (Sept., 2013) pp.
567–593.223[49] E. Panzer, Feynman integrals via hyperlogarithms, in Loops and Legsin Quantum Field Theory - LL 2014, 27 April–2 May 2014, Weimar,Germany, Proceedings of Science, 2014. arXiv:1407.0074 [hep-ph].[50] A. von Manteuffel, E. Panzer and R. M. Schabinger, Journal of HighEnergy Physics 2015 (Feb., 2015) p. 120.[51] W. Zimmermann, Commun. Math. Phys. 15 (1969), no. 3 pp. 208–234.[52] F. C. S. Brown and D. Kreimer, Lett.
Math. Phys. 103 (2013), no. 9pp. 933–1007.[53] T. Binoth and G. Heinrich 2000 Nucl. Phys. B585 741–759 (Preprinthep-ph/0004013).[54] R. Kreckel, Comp. Phys. Comm. vol: 106 (3) pp: 258-266 (1997)[55] T. Hahn, Comp. Phys. Comm. vol: 168 (2) pp: 78-95 (2005)[56] A. V. Smirnov, FIESTA 4: optimized Feynman integral calculationswith GPU support, Comput. Phys. Commun. 204 (2016) pp. 189–199,arXiv:1511.03614 [hep-ph].[57] De Dominicis, C., Peliti, L., Phys.
Rev. Lett. 38, 505 (1977)[58] De Dominicis, C., Peliti, L., Phys. Rev. B 18, 353 (1978)[59] Dohm, V., Z. Physik B 33, 79-95 (1979)[60] D. I. Kazakov, D. V. Shirkov and O. V. Tarasov, Theor. Math. Phys.38, 9 (1979) [Teor. Mat. Fiz. 38, 15 (1979)].[61] D. I. Kazakov and D. V. Shirkov, Fortsch. Phys. 28 (1980) 465.[62] Loeffel J 1996 Workshop on Pade approximants ed Bessis D, GilewiczJ and Merry P (ACM Press)[63] Le Guillou J C and Zinn-Justin J 1977 Phys. Rev. Lett. 39(2) 95–98[64] Le Guillou J C and Zinn-Justin J 1980 Phys.
Rev. B 21(9) 3976–3998[65] Baker G 1975 Essentials of Pade Approximants (Academic, New York)224[66] Baker G A, Nickel B G and Meiron D I 1978 Phys. Rev. B 17(3)1365–1374[67] Antonenko S A and Sokolov A I 1995 Phys. Rev. E 51(3) 1894–1898[68] Orlov E and Sokolov A 2000 Physics of the Solid State 42 2151–2158[69] Nalimov M Y, Sergeev V A and Sladkoff L 2009 Theor. Math.
Phys.159 499–508[70] L. N. Lipatov, J. Exptl. Theoret. Phys. 72 (1977) 411.[71] J. Zinn-Justin. Quantum Field Theory and Critical Phenomena.Oxford: Clarendon Press, 2002.[72] A. Pelissetto and E. Vicari. Critical phenomena and renormalizationgroup theory. Physics Reports, 368(6):549–727, 2002.[73] N. V. Antonov, M. V. Kompaniets, N. M. Lebedev Critical behaviourof the O(n) φ4 model with anantisymmetric tensor order parameter //Journal of Physics A: Mathematical and Theoretical, 2013. – Vol. 46,– №40. – P. 405002_1-11[74] K.
G. Wilson,Phys. Rev. Lett. 28, 548 (1972).[75] E. Brezin, J. C. Le Guillou, J. Zinn-Justin and B.G. Nickel Phys. Lett.A 44, 227 (1973).[76] K. G. Chetyrkin, S. G. Gorishny, S. A. Larin and F. V. Tkachov 1983Phys. Lett. B 132 351,K. G. Chetyrkin, S. G. Gorishny, S. A. Larin and F. V.
Tkachov 1986Preprint INR P-0453, Moscow.[77] D. I. Kazakov 1983 Phys. Lett. B 133 406; 1984 Theor.Math.Phys. 58223-230; 1984 Teor. Mat. Fiz. 58 343-353.[78] H. Kleinert, J. Neu, V. Shulte-Frohlinde, K. G. Chetyrkin, S. A. Larin1991 Phys. Lett. B 272 39; Erratum 1993 B 319, 545.[79] J. C. Collins, Normal Products in Dimensional Regularization, Nucl.Phys. B92 (1975) 477.225[80] N. N. Bogoliubov and O.
S. Parasiuk 1957 Acta Math. 97 227.[81] N. N. Bogoliubov and D. V. Shirkov 1976 Introduction to the theory ofquantized fields [in Russian] (Moscow: Nauka)English transl.: 1980 Introduction to the theory of quantized fields, (NewYork: Interscience).[82] J. A. Gracey, Phys. Rev.
D 92 (2015) 2, 025012 [arXiv:1506.03357[hep-th]].[83] A. L. Pismensky, International Journal of Modern Physics A 30 (2015),no. 24 p. 1550138.[84] P. A. Baikov and K. G. Chetyrkin 2010 Nucl. Phys. B 837 186[85] R. N. Lee, A. V. Smirnov and V. A. Smirnov, Nucl. Phys. B 856 (2012)95 [arXiv:1108.0732 [hep-th]].[86] A. N. Vasil’ev, Yu. M. Pismak and Yu. R. Khonkonen, TMF 50:2(1982), 195–206 [Theoretical and Mathematical Physics, 1982, 50:2,127–134]; This paper contains missprint in the second term of the r.h.sof eq.
(22): the denominator must be 3(2 − µ)3 (for details see [9] and2.1.1.6).[87] D. I. Kazakov, TMF 62(1) 127–135 (1985) [Theor. Math. Phys. 62(1)84–49 (1985)].[88] D. J. Broadhurst and D. Kreimer, Int. J. Mod. Phys. C 6 (Aug., 1995)pp. 519–524.[89] O. Schnetz, Commun. Number Theory Phys. 4 (2010), no. 1 pp. 1–47.[90] Vicari E and Zinn-Justin J, 2006 New J. Phys. 8 321[91] Kleinert H and Schulte-Frohlinde V, 2000, Critical Properties of φ4 theories (World Scientific)[92] Prudnikov V V, Prudnikov P V and Vakilov A N, 2012 Field-theoreticand numerical methods of critical phenomena description in systemswith structural disorder (Omsk: Omsk State University Publishing) [inRussian]226[93] Zubkov L A and Romanov V P, 1988 Sov. Phys. Uspekhi 31 328[94] De Gennes P G, 1971 Mol.
Cryst. and Liq. Cryst. 12 193[95] Zia R K P and Wallace D J, 1975 J. Phys. A 8 1495;Priest R G and Lubensky T C, 1976 Phys. Rev. B 13 4159; Erratum:B 14 5125(E)[96] Korzhenevskii A L and Shalaev B N, 1979 Sov. Phys. JETP 49(6) 1094[97] Radzihovsky L and Lubensky T C, 2001 Europhys. Lett. 54 206[98] Mineev V P, 1983 Sov. Phys. Uspekhi 26 160[99] Anderson P W and Brinkman W F, 1973 Phys. Rev. Lett. 30 1108;Brinkman W F, Serene J and Anderson P W, 1974 Phys. Rev. A 102386[100] Sokolov A I, 1980 Sov. Phys.
JETP 51(5) 998; 1983 Sov. Phys. JETP57(4) 798[101] Sauls J A and Serene J W, 1978 Phys. Rev. D 17 1524[102] Sokolov A I, 1980 Sov. Phys. JETP 52(4) 575[103] J. Honkonen, M.V. Komarova, M.Yu. Nalimov, Theor. Math. Phys.176:1 (2013) 89.[104] von Ferber C and Holovatch Yu, 1997 Europhys. Lett. 39 31; 1997 Phys.Rev. E 56 6370;von Ferber Ch and Golovatch Yu, 1997, in Proceedings of theThird International Conference Renormalization Group’ 96, Eds.
DV Shirkov, D I Kazakov and V B Priezzhev, JINR: Dubna, p. 123[105] Landau L D and Lifshitz E M, 1980 Statistical Mechanics. 3rd Edition(Elsevier)[106] Halperin B I, Lubensky T S and Ma S K, 1974 Phys. Rev. Lett. 32292;Kang J S, 1974 Phys. Rev. D10 3455227[107] Kolnberger S and Folk R, 1990 Phys. Rev. B 41 4083;Folk R and Holovatch Yu V, 1996 J.
Phys. A: Math. Gen. 29 3409[108] Radzihovsky L, 1995 Europhys. Lett. 29 227[109] Baxter R J, 1973 J. Phys. C: Solid St. Phys. 6 L445;Amit D J 1976 J. Phys. A: Math. Gen. 9 1441[110] Brazovski S A and Dmitriev, 1975 Sov. Phys. JETP 42(3) 497;Brazovski S A and Filev V M, 1978 Sov. Phys. JETP 48(3) 497 573;Grebel H, Hornreich R M and Shtrikman S, 1983 Phys. Rev. A 28 1114;1984 Phys. Rev.
A 30 3264;Hornreich R M and Shtrikman S, 1987 Z. Phys. B – Cond. Mat. 68369[111] Belyakov V A and Dmitrienko V E, 1985 Sov. Phys. Uspekhi 28 535[112] Dove M T and Redfern S A T, 1997 Am. Mineral. 82 8Watson G W and Parker S C, 1995 Phys. Rev. B 52 13306[113] Goryainov S V and Ovsyuk N N, 1999 JETP Lett. 69 467; 2001 JETPLett. 73 2001[114] A. A. Abrikosov, L. P. Gorkov, and I. E.
Dzyaloshinski, Methods ofQuantum Field Theory in Statistical Physics, (Dobrosvet, Moscow2006).[115] M.A. Baranov, M.Yu. Kagan, Yu.Kagan, JETP Lett. 64:4 (1996) 273.[116] J.A.M.Vermaseren "New features of FORM"math-ph/0010025.[117] L. Ts. Adzhemyan, M. V. Kompaniets Renomalization group and the expansion: representation of the β-function and anomalous dimensionsby nonsingular integrals // Theoretical and Mathematical Physics,2011.
– Vol. 169, – №1. – P. 1450–1459Л.Ц. Аджемян, М.В. Компаниец Ренормгруппа и -разложение:представление β-функции и аномальных размерностей несингулярными интегралами // ТЕОРЕТИЧЕСКАЯ И МАТЕМАТИЧЕСКАЯ ФИЗИКА, 2011. – T. 169, – №1. – С. 100-111228[118] L. Ts. Adzhemyan, M. V. Kompaniets , S. V. Novikov, V. K.Sazonov Representation of the β-function and anomalous dimensionsby nonsingular integrals: Proof of the main relation // Theoretical andMathematical Physics, 2013.