Диссертация (1137458), страница 19
Текст из файла (страница 19)
53-85.62.Jorion P. Value at Risk: A New Benchmark for Managing Derivatives Risk. – Irwin Professional Publishers, 2000.63.Kahneman D. Thinking, fast and slow. - N.Y.: Penguin, 2011.64.Kahneman D., Tversky A. Prospect Theory: An Analysis of Decisionunder Risk // Econometrica. – 1979. – Vol. 47, no.
2. – P. 263-291.65.Kelly M. Do noise traders influence stock prices? // Journal of Money, Credit and Banking. – 1997. – Vol. 29, no.3. – P. 351-363.66.Kim Y.S., Rachev S.T., Bianchi M.L., Fabozzi F.J. Financial marketmodels with Lévy processes and time-varying volatility // Journal ofBanking & Finance. – 2008. – Vol. 32, no.7. – P. 1363–1378.67.Koijen R., van Nieuwerburgh S.
Predictability of Returns and CashFlows // Annual Review of Financial Economics. – 2011. – Vol.3. –P. 467-491.68.Konno H., Yamakazi H. Mean-Absolute Deviation Portfolio Optimization Model and Its Applications to Tokyo Stock Market // Management Science. – 1991. – Vol. 37, no.5. – P. 519 – 531.69.Kuo W.Y., Lin T.C. Overconfident individual day traders: Evidencefrom the Taiwan futures market // Journal of Banking & Finance.
–2013. - Vol. 37, no. 9. – P. 3548-3561.70.Liu Y.K., Wyu X.L, Hao F.F. A new Chance–Variance optimizationcriterion for portfolio selection in uncertain decision systems // Expert Systems With Applications. – 2012. –Vol. 39. no.7. – P. 65146526.71.Lo A.W., Repin D.V. The Psychophysiology of Real-Time FinancialRisk Processing // Journal of Cognitive Neuroscience. – 2002. – Vol.14, no. 3. – P. 323-339.15272.Lo A.W., Repin D.V., Steenbarger B.N. Fear and Greed in FinancialMarkets: A Clinical Study of Day-Traders // American EconomicReview.
– Vol. 95, no. 2. – P.352-359.73.Longstaff F.A., Rajan A. An Empirical Analysis of the Pricing ofCollateralized Debt Obligations // Journal of Finance. – 2008. – Vol.63, no. 2. – P. 529-563.74.Lewellen J. Predicting returns with financial ratios // Journal of Financial Economics. – 2004. – Vol. 74. – P. 209–235.75.Malkiel B.G., Saha A.
Hedge Funds: Risk and Return // FinancialAnalysts Journal. – 2005. – Vol. 61, no. 6. – P.80-88.76.Markowitz H. Portfolio Selection // Journal of Finance. –1952. –Vol. VII, No.1. – P. 77-91.77.Mao J. Models of Capital Budgeting, E-V vs. E-S // Journal of Financial and Quantitative Analysis.
–1970. – Vol. 4, no. 05. – P. 657675.78.Merton R. An Intertemporal Capital Asset Pricing Model // Econometrica. – 1973. – Vol. 41, no.5. – P. 867-887.79.Montero M. Predator-Prey Model for Stock Market Fluctuations. –2008. – URL: http://ssrn.com/abstract=1290728.80.Morelli M., Montagna G., Nicrosini G., Treccani M., Farina D., Amato P. Pricing financial derivatives with neural networks // PhysicaA: Statistical Mechanics and its Applications. – 2004. – Vol.
338,.no.1-2. – P. 160 – 165.81.Mullainathan S., Thaler R.H. Behavioral Economics. – 2000. –NBER Working paper. URL: http://www.nber.org/papers/w7948.82.Nelson C. R., Kang H. Pitfalls in the Use of Time as an ÅxplanatoryVariable in Regression // Journal of Business and Economic Statistics. – 1984.
– Vol. 2. – P. 73–82.15383.Nelson C. R., Plosser C. I. Trends and Random Walks in Macroeconomic Time Series: Some Evidence and Implication // Journal ofMonetary Economics. – 1982. – Vol. 10. – P. 139–62.84.O’Connor N., Madden M. A neural network approach to predictingstock exchange movements using external factors // KnowledgeBased Systems. – Vol. 19, no.5.
– P. 371-378.85.Odean T. Do investors trade too much? // American Economic Review. – 1999. – Vol. 89, no. 5. – P. 1279–98.86.Östermark R. Predictability of Finnish and Swedish stock returns //Omega. – Vol. 17, no. 3. – P. 223-236.87.Ortobelli L.S., Rachev S.T. Safety-first analysis and stable paretianapproach to portfolio choice theory // Mathematical and ComputerModelling. – 2001.
– Vol. 34, no. 9-11. – P. 1037-1072.88.Palomino F., Renneboog L., Zhang C. Information salience, investorsentiment, and stock returns: The case of British soccer betting //Journal of Corporate Finance. – 2009. – Vol. 15, no. 3. – P. 368-387.89.Penikas H., Proskurin S. How Well Do Analysts Predict Stock Prices? Evidence from Russia. – 2013.
– Working papers by NRU Higher School of Economics. Series FE «Financial Economics», WP BRP18/FE/2013.90.Phillips P. C. B., Wu Y., Yu J. Explosive Behavior in the 1990sNASDAQ: When Did Exuberance Escalate Asset Values? // International Economic Review. – 2011. – Vol. 52, no. 1. – P.201–226.91.Robertson S., Zaragoza H. The Probabilistic Relevance Framework:BM25 and Beyond // Journal Foundations and Trends in InformationRetrieval.
2009. –Vol. 3, no 4. – P. 333–389.92.Rockafellar R. T., Uryasev S. Optimization of Conditional Value-atRisk // Journal of Risk. – 2000. – Vol. 2. P. 21–41.15493.Rothig A., Chiarella C. Small traders in currency futures markets //Journal of Futures Markets. – 2011. – Vol.31, no.9. – P. 898-914.94.Ross S. The arbitrage theory of capital asset pricing // Journal ofEconomic Theory. – 1976. – Vol. 13, no.3. – P. 341-360.95.Roy A.D. Safety-first and the holding of assets // Econometrica.
–1952. – Vol. 20, no.3. – P. 431-439.96.Simon H. A Behavioral Model of Rational Choice // The QuarterlyJournal Of Economics. – 1955. – Vol. 69, no. 1. – P. 99-118.97.Shapira Z., Venezia I. Patterns of behavior of professionally managed and independent investors // Journal of Banking & Finance. –2001. – Vol. 25, no. 8. – P. 1573-1587.98.Sharpe W.F. Capital asset prices: A theory of market equilibriumunder conditions of risk // Journal of Finance. – 1964. –Vol.
19, no.3.– P. 425–442.99.Seppala J. The diversification of currency loans: A comparison between safety-first and mean-variance criteria // European Journal ofOperational Research. – 1994. – Vol. 74, no. 2. – P. 325-34.3100.Soderlind P. Predicting stock price movements: regressionsversus economists // Applied Economic Letters. – 2010. – Vol. 17. –P. 869-874.101.Sornette D. Dragon-Kings, Black Swans and the Prediction ofCrises // International Journal of Terraspace Science and Engineering.
– 2009. – Vol. 2, no.1. – P. 1-18.102.Stracca L. Behavioral Finance and Asset Prices: Where Do WeStand? // Journal of Economic Psychology. – 2004. – Vol. 25. – P.373-405.103.Taleb N. N. The Black Swan: The Impact of The Highly Im-probable. – London: Penguin Books, 2008.155104.Tay F.E.H., Lijuan C. Application of support vector machinesin financial time series forecasting // Omega: The International Journal of Management Science. – 2001.
– Vol. 29, no. 4. – P. 309-317.105.Tedeschi G., Iori G., Gallegati M. Herding Effects in OrderDriven Markets: The Rise and Fall of Gurus // Journal of EconomicBehavior & Organization. – 2012. – Vol. 81. – P. 82-96106.Tsay R.S. Analysis of Financial Time Series. – Wiley, 2002.107.Tversky A., Kahneman D.
Judgment under Uncertainty: Heu-ristics and Biases //Science. – 1974. – Vol. 185, no. 4157. – P.1124-1131.108.Tversky A., Kahneman D. The framing of decisions and thepsychology of choice // Science. – 1981. – Vol. 211, no. 4481. – P.453-458.109.Tversky A., Kahneman D. Advances in Prospect-Theory -Cumulative Representation of Uncertainty // Journal of Risk and Uncertainty. – 1992.
– Vol.5, no.4. – P.297-323.110.Vasicek O. An equilibrium characterization of the term struc-ture // Journal of Financial Economics. – 1977. – Vol. 5, no.2. – P.177-188.111.Venezia I., Nashikkar A., Shapira Z. Firm Specific and MacroHerding by Professional and Amateur Investors and Their Effects onMarket Volatility // Journal of Banking &Finance. – 2011. – Vol. 35.– P. 1599-1609.112.Yan W. Continuous-time safety-first portfolio selection withjump-diffusion processes // International Journal of Systems Science.– 2012.
– Vol. 43, no. 4. – P. 622-628.113.Yu C. L., Li H., Wells M. T. MCMC Estimation of Levy JumpModels using Stock and Option Prices // Mathematical Finance. –2011. – Vol. 21, no. 3. – P. 383–422 .156Приложение 1. Краткое описание биржи и правил игры на нейП.1.1. Основные сведения о биржеБиржей называется регулярно функционирующий организованный оптовый рынок однородных товаров.
На бирже не требуется присутствия товаров, и иногда даже наличия самих продавцов и покупателей – нужны лишь посредники, осуществляющие непосредственнуюпроцедуру торга, что упрощает и облегчает торговлю различными товарами, способствует формированию рыночных цен на товары и расширению возможностей для продавцов и покупателей [20].Биржа организует ведение торгов, учет заявок и исполненныхсделок, организует и гарантирует расчеты, следит за выполнениемсделок.