Диссертация (1137416), страница 19
Текст из файла (страница 19)
16. — №. 2. — С. 423–430.[72] Gorman, J. Charge-qubit operation of an isolated double quantum dot /J. Gorman, D. J. Hasko, D. A. Williams // Physical review letters. — 2005.— Т. 95. — №. 9. — С. 090502.[73] Graffi, S. Tunnelling instability via perturbation theory / S. Graffi, V. Grecchi,G. Jona-Lasinio // Journal of Physics A: Mathematical and General. — 1984.— Т. 17. — №. 15. — С. 2935–2944.[74] Hall, B.
C. Quantum Theory for Mathematicians / B. C. Hall // GraduateTexts in Mathematics. — Т. 267. — New York: Springer, 2013. — 554 с.[75] Harrell, E. M. Double wells / E. M. Harrell // Communications inMathematical Physics. — 1980. — Т. 75. — №. 3. — С. 239–261.[76] Harrell, E. M.
On the rate of asymptotic eigenvalue degeneracy / E. M. Harrell// Communications in Mathematical Physics. — 1978. — Т. 60. — №. 1. —С. 73–95.117[77] Harrell, E. M. On the effect of the boundary conditions on the eigenvaluesof ordinary differential equations / E. M. Harrell // American Journal ofMathematics, supplement. — 1981.
— С. 139–150.[78] Harrell, E. M. The band-structure of a one-dimensional, periodic system in ascaling limit / E. M. Harrell // Annals of physics. — 1979. — Т. 119. — №. 2.— С. 351–369.[79] Heitler, W. Wechselwirkung neutraler Atome und homöopolare Bindung nachder Quantenmechanik / W. Heitler, F. London // Zeitschrift für Physik. —1927. — Т. 44.
— №. 6–7. — С. 455–472.[80] Helffer, B. Semi-classical analysis for the Schrödinger operator andapplications / B. Helffer // Lecture notes in mathematics, vol. 1336. — Berlin:Springer, 1988. — 110 c.[81] Helffer, B. Multiple wells in the semi-classical limit I / B. Helffer, J. Sjöstrand// Communications in Partial Differential Equations. — 1984. — Т. 9.
— №. 4.— С. 337–408.[82] Helffer, B. Puits multiples en limite semi-classique. II: Interaction moléculaire.Symétries. Perturbation / B. Helffer, J. Sjöstrand // / Annales de l’institutHenri Poincaré (A) Physique théorique. — 1985. — Т. 42. — №. 2. — С. 127–212.[83] Helffer, B. Multiple wells in the semi-classical limit III: Interaction ThroughNon-Resonant Wells / B.
Helffer, J. Sjöstrand // Mathematische Nachrichten.— 1985. — Т. 124. — №. 1. — С. 263–313.[84] Heller, E. J. Quantum dynamical tunneling in large molecules. A plausibleconjecture / E. J. Heller, M. J. Davis // The Journal of Physical Chemistry.— 1981. — Т. 85. — №. 4. — С. 307–309.[85] Hensinger, W. K.
Dynamical tunnelling of ultracold atoms / W. K. Hensinger,H. Häffner, A. Browaeys, N. R. Heckenberg, K. Helmerson, C. McKenzie,G. J. Milburn, W. D. Phillips, S. L. Rolston, H. Rubinsztein-Dunlop,B. Upcroft // Nature. — 2001. — Т. 412. — №. 6842. — С. 52–55.118[86] Herring, C. Critique of the Heitler-London method of calculating spincouplings at large distances / C. Herring // Reviews of Modern Physics. —1962. — Т. 34. — №.
4. — С. 631–645.[87] Herring, C. Asymptotic Exchange Coupling of Two Hydrogen Atoms /C. Herring, M. Flicker // Physical Review A. — 1964. — Т. 134. — №. 2.— С. 362–366.[88] Hochstadt, H. Estimates on the stability intervals for Hill’s equation /H. Hochstadt // Proceedings of the American Mathematical Society. — 1963.— Т. 14. — №. 6. — С. 930–932.[89] Hochstadt, H. Instability intervals of Hill’s equation / H. Hochstadt //Communications on Pure and Applied Mathematics. — 1964. — Т.
17. — №. 2.— С. 251–255.[90] Hoehn, E. K. H. On the coexistence problem for a special Hill’s equation /E. K. H. Hoehn // ZAMM Journal of Applied Mathematics and Mechanics.— 1969. — Т. 49. — №. 11. — С. 679–683.[91] Hund, F. Zur Deutung der Molekelspektren. I / F. Hund // Zeitschrift fürPhysik. — 1927. — Т. 40. — №. 10. — С.
742–764.[92] Jaffe, R. L. Reflection above the barrier as tunneling in momentum space/ R. L. Jaffe //American Journal of Physics. — 2010. — Т. 78. — №. 6. —С. 620–623.[93] Jona-Lasinio, G. New approach to the semiclassical limit of quantummechanics / G. Jona-Lasinio, F. Martinelli, E. Scoppola // Communicationsin Mathematical Physics. — 1981. — Т.
80. — №. 2. — С. 223–254.[94] Karasev, M. V. Tunnel catch from potential wells and energy detection /M. V. Karasev, E. V. Vybornyi // Working papers by Cornell University.Series math-ph “arxiv.org”. — arXiv:1411.4436. — 2014.
— 11 c.[95] Le Deunff, J. Instantons revisited: dynamical tunnelling and resonanttunnelling / J. Le Deunff, A. Mouchet // Physical Review E: Statistical,Nonlinear, and Soft Matter Physics. — 2010. — Т. 81. — C. 046205.119[96] Leibscher, M. Quantum dynamics of a plane pendulum / M. Leibscher,B. Schmidt // Physical Review A. — 2009. — Т. 80. — №. 1. — С. 012510.[97] Magnus, W.
Hill’s Equation / W. Magnus, W. Winkler. — New York: Wiley,1966. — 127 c.[98] Maitra, N. T. Semiclassical perturbation approach to quantum reflection /N. T. Maitra, E. J. Heller // Physical Review A. — 1996. — Т. 54. — №. 6. —С. 4763–4768.[99] Nieto, M. M. Resonances in quantum mechanical tunneling / M. M. Nieto,V. P. Gutschick, C. M. Bender, F.
Cooper, D. Strottman // Physics Letters B.— 1985. — Т. 163. — №. 5-6. — С. 336–342.[100] Olver, F. W. J. Asymtotics and special functions / F. W. J. Olver. — NewYork: Academic Press, 1974. — 547 с.[101] Polyakov, A. M. Quark confinement and topology of gauge theories /A. M. Polyakov // Nuclear Physics B. — 1977. — Т. 120. — №. 3. — С.429–458.[102] Pöschel, J. Hill’s potentials in weighted Sobolev spaces and their spectral gaps/ J. Pöschel // Mathematische Annalen.
— 2011. — Т. 349. — №. 2. — С.433–458.[103] Razavy, M. Quantum Theory of Tunneling / M. Razavy. — Singapore: WorldScientific Publishing Co. Pte. Ltd. 2003. — 549 p.[104] Simon, B. Instantons, double wells and large deviations / B. Simon // Bulletinof the American Mathematical Society. — 1983. — Т. 8. — №. 2. — С. 323–326.[105] Simon, B. Semiclassical analysis of low lying eigenvalues. I. Non-degenerateminima: Asymptotic expansions / B. Simon // Annales de l’institut HenriPoincaré (A) Physique théorique.
—1983. — Т. 38. — №. 3. — С. 295–308.[106] Simon, B. Semiclassical analysis of low lying eigenvalues. II: Tunneling /B. Simon // Annals of mathematics. — 1984. — Т. 120. — №. 1. — С. 89–118.120[107] Simon, B. Semiclassical analysis of low lying eigenvalues. IV. The flea on theelephant / B. Simon // Journal of functional analysis. — 1985. — Т. 63. —№.
1. — С. 123–136.[108] Song, D. Y. Tunneling and energy splitting in an asymmetric double-wellpotential / D. Y. Song // Annals of Physics. — 2008. — Т. 323. — №. 12.— С. 2991–2999.[109] Trubowitz, E. The inverse problem for periodic potentials / E. Trubowitz //Communications on Pure and Applied Mathematics.
— 1977. — Т. 30. — №. 3.— С. 321–337.[110] von Neumann, J. Uber merkwürdige diskrete Eigenwerte. Uber das Verhaltenvon Eigenwerten bei adiabatischen Prozessen / J. von Neumann, E. Wigner// Physikalische Zeitschrift — 1929. — Т. 30. — С. 467–470..