Диссертация (1137397), страница 16
Текст из файла (страница 16)
Âíå äàííûõ îðáèò ìû ïîëó÷àåì íå ìåíåå äâóõ ÷èñåë, êîòîðûå íå îáðàùàþòñÿâ íîëü.Ïî Ëåììå 9.11 ìû ñíîâà ïîëó÷àåì, ÷òîω02 ∈ R.Ïðèìåíÿÿ Ëåììó 9.11 è Ïðåäëîæåíèå 9.21 íåñëîæíî çàìåòèòü, ÷òî äëÿ âñÿêèõèω02 ∈ Rôðîáåíèóñîâî ìíîãîîáðàçèå(τ0 ,ω0 )M6îïðåäåëåíî íàäñóùåñòâóåòåäèíñòâåííîåôðîáåíèóñîâîìíîãîîáðàçèå,√−1RR.3.2. Äîêàçàòåëüñòâî òåîðåìû î çåðêàëüíîé ñèììåòðèè òèïà LGLG.÷òîτ0 ∈óäîâëåòâîðÿþùååÏîêàæåì,àêñèîìàìîðáèôîëäîâîé Àìîäåëè ËàíäàóÃèíçáóðãà.ÑîãëàñíîàêñèîìàìîðáèôîëäîâîéÀìîäåëè,ìíîãîîáðàçèå äîëæíî áûòü îïðåäåëåíî íàäQ.ðàññìîòðåòü òîëüêî ôðîáåíèóñîâû ìíîãîîáðàçèÿ c99ñîîòâåòñòâóþùååôðîáåíèóñîâîÏî Ïðåäëîæåíèÿ 9.23 è 9.24 ñëåäóåòτ0 ∈√−1R.Òðåáóÿ,MP12,2,2,2÷òîôðîáåíèóñîâîìíîãîîáðàçèåñ êâàäðàòè÷íî èððàöèîíàëüíûìτ0 ,ïðèíàäëåæèòÏîÒåîðåìå9.19ìíîãîîáðàçèÿìû ïîëó÷àåì ïî Ïðåäëîæåíèþ 9.10 íåîáõîäèìîåóñëîâèå 3ìåðíîå ôðîáåíèóñîâî ìíîãîîáðàçèåêâàäðàòè÷íî èððàöèîíàëüíûìA(τ0 ,ω0 ) îðáèòå(τ0 ,ω0 )M3äîëæíî áûòü îïðåäåëåíî íàäQñτ0 .êîìïëåêñíîåτ0÷èñëîïðèíàäëåæèòñïèñêó,ïðèâåäåííîìóâÑëåäñòâèè 9.17 è ÿâëÿåòñÿ ÷èñòî ìíèìûì.
Ýòî â òî÷íîñòè ñëåäóþùèå ÷èñëà:√√√√√τ0 ∈ SL(2, Z) { −1, −2, −3, −4, −7}.ÍåñëîæíîïðîâåðèòüÏðåäëîæåíèåòî÷êåt=09.24,êðîìåÿâíî÷òîτ0 =√òàêèåèñïîëüçóÿτ0íåÿâíîäàþòâûïèñàííûåðàöèîíàëüíûõ−1.100ìîäåëèðåøåíèéÂåéåðøòðàññàóðàâíåíèÿ(9.11)èâÁèáëèîãðàôèÿ[1] Dan Abramovich. Lectures on GromovWitten invariants of orbifolds.Lecture Notes in Math, 1947, Springer,2008.[2] V.I.
Arnold, S. Gusein-Zade, A. Varchenko. Singularities of dierentiable maps, Volume 2. Birkhauser Boston,2012.[3] A. Basalaev. Homepage. http://basalaev.wordpress.com[4] A. Basalaev. Orbifold GW theory as the HurwitzFrobenius submanifold. J. Geom. Phys., 77, 2014, pp. 3042.[5] A. Basalaev. SL(2, C) group action on Cohomological eld theories.preprint, arXiv:1405.6607[6] A. Basalaev, A. Takahashi.
On rational Frobenius Manifolds of rank three with symmetries., 2014.,J. Geom. Phys.84, 2014, pp. 7386.[7] P. Berglund, M. Henningson. Landau-Ginzburg orbifolds, mirror symmetry and the elliptic genus. Nucl.Phys., 433, 1995, pp. 311332.B[8] P. Candelas, X. De La Ossa, P. Green, L. Parkes.
A pair of Calabi-Yau manifolds as an exactly solublesuperconformal theory., 359, 1991, pp. 2174.Nucl. Phys. B[9] W. Chen, Y. Ruan. A New Cohomology Theory for Orbifold.Comm Math Phys, 248, 2000, pp. 131.[10] A. Chiodo, Y. Ruan. A global mirror symmetry framework for the Landau-Ginzburg/Calabi-Yau correspondence., 2013.preprint arXiv: 1307.0939[11] Boris Dubrovin. Geometry of 2d topological eld theories. InLect. Notes Math, Springer, 1996.[12] Boris Dubrovin.
Painleve' transcendents in two-dimensional topological eld theory.CRM Series in Mathe-, Springer, 1999.matical Physics[13] W. Ebeling. Functions of Several Complex Variables and Their Singularities. Graduate studies in mathematics,83, AMS, 2007.[14] W. Ebeling, A. Takahashi. Strange duality of weighted homogeneous polynomials., 147(05),Compos. Math.2011, pp. 14131433.[15] W. Ebeling, A.
Takahashi. Mirror Symmetry between Orbifold Curves and Cusp Singularities with GroupAction.Int. Math. Res. Not., 2013(10), 2013, pp. 22402270.[16] H. Fan, T. Jarvis, Y. Ruan. The Witten equation, mirror symmetry, and quantum singularity theory.Ann., 178(1), 2013, pp. 1106.Math.[17] G. Frobenius, L. Stickelberger. Uberdie dierentiation der elliptischen functionen nach den Perioden undinvarianten.J.
reine angew. Math., 92, 1982, pp. 311327.[18] A. Givental. Gromov - Witten invariants and quantization of quadratic hamiltonians., 1(4),Mosc. Math. J.2001, pp. 551568.[19] C. Hertling. Frobenius Manifolds and Moduli Spaces for Singularities. Cambridge University Press, Cambridge,2002.[20] K. Intriligator, C. Vafa. Landau-Ginzburg orbifolds.Nucl. Phys. B101, 339(1), 1990, pp. 95120.[21] Y. Ishibashi, Y.
Shiraishi, A. Takahashi. A Uniqueness Theorem for Frobenius Manifolds and GromovWittenTheory for Orbifold Projective Lines.preprint arXiv:1209.4870, 2012.[22] T. Jarvis, R. Kaufmann, T. Kimura. Pointed admissible G-covers and G-equivariant cohomological eld theories,, 141(4), 2005, pp. 926978.Comp. Math.[23] L. Katzarkov, M. Kontsevich, T.
Pantev. Hodge theoretic aspects of mirror symmetry.Proc. Symp. Pure, 78, 2008, pp. 87174.Math.[24] R. Kaufmann. Singularities with Symmetries, orbifold Frobenius algebras and Mirror Symmetry.Contemp., 403, 2006, pp. 146.Math.[25] L. J. P. Kilford. Modular forms: a classical and computational introduction.[26] M. Krawitz. FJRW rings and Landau-Ginzburg Mirror Symmetry., 2008.Imperial college presspreprint arXiv:0906.0796, 2009.[27] M. Krawitz, Y. Shen. Landau-Ginzburg/Calabi-Yau Correspondence of all Genera for Elliptic Orbifold P1 .preprint arXiv:1106.6270, 2011.[28] M. Kaneko, D.
Zagier. A generalized Jacobi theta function and quasimodular forms., 128, 1994,Progr. Math.pp. 165172.[29] D. Lawden. Elliptic Functions and Applications., Springer, 1989.Appl. Math. Sci.[30] W. Lerche, C. Vafa, N. P. Warner. Chiral rings in N = 2 superconformal theories. Nucl., 324(2), 1989,Phys. Bpp. 427474.[31] E. Looijenga.
On the semi-universal deformation of a simple-elliptic hypersurface singularity Part II: thediscriminant.Topology, 17(1), 1978, pp. 2340.[32] Y. Manin. Frobenius Manifolds, Quantum Cohomology, and Moduli Spaces.[33] D. Masser. Elliptic Functions and Transcendence.Colloquium editionAMS, 1999., Springer , 1975.Lecture Notes in Math[34] T.
Milanov, Y. Ruan. GromovWitten theory of elliptic orbifold P and quasi-modular forms.1arXiv:1106.2321, 2011.[35] T. Milanov, Y. Shen. Global mirror symmetry for invertible simple elliptic singularities.arXiv:1210.6862preprintpreprint, 2012.[36] T. Milanov, Y. Shen. The modular group for the total ancestor potential of Fermat simple elliptic singularities.preprint arXiv:1401.2725, 2014.[37] M. Noumi, Y.
Yamada. Notes on the at structures associated with simple and simply elliptic singularities.Integr. Syst. Algebr. Geom., Proceedings of the Taniguchi Symposium 1997, pp. 373383.[38] Y. Ohyama. Dierential relations of theta functions.[39] K. Saito. Einfach-elliptische Singularitaten.Osaka J. Math, 32, 1995, pp. 431450., 23(3-4), 1974, pp. 289325.Invent. Math.[40] K. Saito.
Period mapping associated to a primitive form. Publ., 19, 1983, pp. 12311264.Res. Inst. Math. Sci.[41] K. Saito, A. Takahashi. From primitive forms to Frobenius manifolds.Proc. Symp. Pure Math., 78, 2008, pp.3148.[42] M. Saito. On the structure of Brieskorn lattices.Ann. Inst. Frourier Grenoble, 39, 1989, pp. 2772.[43] Ikuo Satake, A. Takahashi. GromovWitten invariants for mirror orbifolds of simple elliptic singularities. Ann.Inst. Fourier, 61, 2011, pp.
28852907.[44] J. Silverman. Advanced Topics in the Arithmetic of Elliptic Curves.[45] I. Strachan. Frobenius submanifolds.J. Geom. Phys.[46] A. Strominger. Mirror symmetry is T-duality.Graduate Texts in Math, 38, 2001, pp. 285307., 479(1-2), 1996, pp. 243259.Nucl. Phys. B102, Springer, 1994.[47] A. Varchenko, B. Blok. Topological Conformal Field Theories and the Flat Coordinates.Mod. Phys. Lett.
A,7(07), 1992, pp. 14671490.[48] E. Witten. Mirror Manifolds And Topological Field Theory.[49] E. Witten. Phases of N = 2 theories in two dimensions.103, 403(1-2), 1993, pp. 159222.Nucl. Phys. B[50] D. Zagier. Elliptic modular forms and their applications. Inpp. 1103., 1991.preprint arXiv:hep-th/9112056, Springer Universitext, 2008,1-2-3 Modul.
forms.