Методичка по осциллятору, квантованию, матрице плотности (1129351), страница 18
Текст из файла (страница 18)
Такой ансамбль называется большим каноническим. Очевидно, распределение будет отличаться от полученного ранее канонического распределения, поскольку появилась дополнительная (макроскопическая) степень свободы, которая позволяет ввести дополнительное статистическое понятие. Поскольку речь идет об обмене частицами, число частиц в подсистемах ансамбля не фиксировано,следовательно нам придется определять наряду со среднейэнергией среднее число частиц hN i :Ã!Ã!XXbρ = T rhN i = T r Na+n̂ν,σ ρ.ν,σ aν,σ ρ ≡ T rν,σν,σ(7.1)Далее найдем экстремум энтропии при условии нормировки матрицы плотности и значений средних энергии и числачастиц.
В результате вариации по матрице плотности получаем:³´b + λNb δρ = 0.T r ln ρ + 1 + α + β H(7.2)Здесь введен дополнительный неопределенный множительЛагранжа λ, который удобно переопределить как λ = −βµ.Такой выбор знака нового параметра µ будет понятен ниже.
Решение уравнения (7.2) есть:bbρ = Z −1 e−β(H−µN ) ,158(7.3)где нормировочный множитель есть большая статистическая сумма:bbZ = T re−β(H−µN ) =!!ÃÃ∞XXXXεν,σ nν,σ . (7.4)exp βµnν,σ exp −β=N =0P {nν,σ };nν,σ = Nν,σν,σДополнительное суммирование по числу частиц в формуле(7.4) позволяет факторизовать большую статистическуюсумму для бозе- и ферми-частиц. Перепишем выражение(7.4) в видеZ=∞XN =0XP {nν,σ };nν,σ = NYYνσexp (β(µ − εν )nν,σ ) .(7.5)Теперь нам нужно поменять местами знаки суммированияпо всем без ограничения числам частиц N и произведенияпо одночастичным состояниям частиц в ансамбле. Такаяперестановка напоминает сведение многомерного интеграла к произведению одномерных интегралов по независимым переменным.
Итак, в нашем выражении (7.5) проводится двойное суммирование произведений двух сомножителей со степенями, зависящими от переменных суммирования, при этом во всем выражении встречаются сомножители со всеми возможными степенями. В такой суммеможно выбирать любой порядок суммирования, например,зафиксировав степень одного сомножителя провести суммирование по всем степеням другого сомножителя, а затемпровести суммирование по всем степеням первого сомножителя. Легко видеть, что в этом случае сумма произведений сводится к произведению сумм.
Эти рассужденияможно проиллюстрировать наглядной схемой.159Пусть ансамбль состоит из двухуровневых подсистем,т.е. ν = 1, 2 и соответственно имеем nν = n1 , n2 . Нам нужновычислить суммуZ2 =∞XN =0Xan1 bn2 =N∞ XXaN −n bn .(7.6)N =0 n=0n1 ; n2n1 + n 2 = NПредставим полученную сумму (7.6) в виде схемы:1a+ba2 + ab + b2a3 + a2 b + ab2 + b3.....................Легко видеть, что суммирование по строкам данной схемыесть суммирование произведений, а суммирование “по диагоналям”, дающее тот же результат, есть произведениесумм:Ã∞!à ∞ !∞XXXXn1 n2na b =abk .
(7.7)Z2 =n=0N =0n1 ; n2n1 + n 2 = Nk=0Для многоуровневых систем результат легко обобщается.Применим полученный результат для систем бозе и ферми частиц:YYXeβ(µ−εν )nν,σ .Z=(7.8)νσ nν,σДалее в формуле (7.8) проведем суммирование для двухсортов частиц раздельно. Для ферми-частиц nν,σ = 0, 1,поэтому получаем´YY³1 + eβ(µ−εν ) .ZF =(7.9)νσ160Для бозе-частиц никаких ограничений на число частиц вданном одночастичном состоянии нет, поэтому суммирование приводит к сумме бесконечной геометрической прогрессии, однако для сходимости результата необходимо наложить ограничение на величину параметра µ.
Посколькуэнергия каждой частицы ограничена, необходимо, чтобыпри достаточно больших n члены суммы убывали, поэтомуµB < 0(7.10)и получаемZB =YY³νσ1 − eβ(µ−εν )´−1.(7.11)Ограничений на параметр µF ферми-системы нет. Результаты (7.9) можно (7.11) объединить одной записью, введязнакомый параметр ζ :´−ζYY³1 − ζeβ(µ−εν ).(7.12)Zζ =νσИтак, для систем невзаимодействующих тождественныхчастиц факторизуется большая статистическая сумма,однако следует заметить, что теперь сомножители (одночастичные статсуммы) соответствуют не реальным отдельным частицам, а индивидуальным одночастичным состояниям, поэтому в сумме всегда присутствует бесконечноечисло сомножителей. Такая, на первый взгляд абстрактная, ситуация на самом деле полностью отражает свойствасистем тождественных частиц: не имеет значения какая частица находится в системе с данной энергией, важно сколько частиц и в каких состояниях составляют данный ансамбль.Мы логично подошли к выводу, что для системы тождественных частиц важную роль (даже, может быть более161важное чем сама функция распределения) играет среднеечисло частиц в данном квантовом состоянии hnν,σ i.Запишем матрицу плотности большого каноническогоансамбля ρG в представлении вторичного квантования:!ÃX−1+ρG =Z exp β(µ − εν )aν,σ aν,σ =Ã=Z −1 exp βν,σXν,σ(µ − εν )n̂ν,σ!.(7.13)По определению среднее число частиц в состоянии |ν, σiестьhnν,σ i = T r n̂ν,σ ρG .(7.14)Запишем выражение (7.14) в явном виде и учтем, перестановочные ссотношения для операторов рождения и уничтожения, а именно: операторы числа частиц в разных состояниях между собой перестановочны, поэтому при вычислении следа с оператором n̂ν,σ “зацепится” только одинсомножитель в факторизованной сумме.
Получаем:hnν,σ i =QP β(µ−εν )nν,σeX0 ,σ 0 6=ν,σ} nν,σ{νQP β(µ−ε )nnν,σ eβ(µ−εν )nν,σ ==νν,σenν,σPneβ(µ−εν )n= P β(µ−ε )nνe{все (ν,σ)} nν,σn(7.15)nПоследнее слагаемое в формуле (7.15) можно выразить ввиде производной:!ÃX∂exp (β(µ − εν )n) .(7.16)hnν,σ i =ln∂(βµ)n162Полученная в выражении (7.16) уже вычислена для фермии бозе-систем:³´−ζ∂1ln 1 − ζeβ(µ−εν )hnν,σ iζ == β(ε −µ). (7.17)ν∂(βµ)e−ζТаким образом получаем распределение Бозеhnν,σ iB =1eβ(εν −µ)и распределение Ферми:hnν,σ iF =−11eβ(εν −µ)+1.(7.18)(7.19)Отметим, что в полученных формулах распределений среднее число частиц не зависит от проекции спина, однаконельзя забывать, что состояние обязательно определяетсянабором {ν, σ}, поэтому в распределении Ферми (7.19) наданном уровне энергии могут находиться 2s + 1 частицы сразными проекциями спина, а для бозе-частиц таких ограничений нет.
Тем не менее при выполнении суммированиянельзя забывать различные спиновые состояния.7.8Понятие о парастатистикеРассмотрим системы, описываемые статистикой, которуюможно рассматривать как “гибрид” статистик Ферми и Бозе, т.е. в каждом состоянии ν такой системы может находиться не более p частиц. Если p = 1, имеем статистикуФерми, а если p → ∞ – статистику Бозе. В таком случаеговорят, что система описывается парастатистикой. Мыне будем здесь пытаться ввести многочастичный формализм чисел заполнения, как это делали для существующихферми- и бозе-частиц, но получим только функцию распределения, аналогичную распределениям (7.1) и (3.3), исходя163из комбинаторных представлений для нахождения наиболее вероятного распределения.Поскольку в каждом состоянии |νi может находитьсяне более p частиц (p ≥ 1), следует сперва определить статистический вес каждого состояния.
Статистический вессостояния, когда в нем находится n частиц есть: γν (n). Таким образом каждое состояние обладает статистическимвесомpXΓν =γν (n).(8.1)n=0Соответственно, в каждом состоянии может находиться число частиц:pXNν =nγν (n).(8.2)n=0Полное число состояний в такой системе (статистическийвес) равно:Γ=XνΓν !.γν (0!)γν (1)! .
. . γν (p)!(8.3)Найдем экстремум числа состояний (8.3) при условиях:XXN=Nν , E =εν N ν .(8.4)ννОбычно ищется экстремум не самой функции (8.3), а еелогарифма, т.е. статистической энтропии при вариации попеременным γν . Составим функционал:Φ = ln Γ − βE + βµN ="#XX=ln Γν ! −(ln γν (n)! + βεν γν (n)n − βµγν (n)n) . (8.5)νn164Далее заменим по формуле Стирлинга с точностью до предэкспоненциального множителя всеln γν (n)! ≈ γν (n) ln γν (n) − γν (n)и проварьируем функционал (8.5) по переменным γν (n) :"#X X(ln γν (n) + βεν n − βµn) δγν (n) = 0.(8.6)ννРешением уравнения (8.6) будет экспонентаγν (n) = e−β(εν −µ)n ,(8.7)а частная статистическая сумма (статистический вес Γν )равна сумме конечной геометрической прогрессии:Γν =pXe−β(εν −µ)n =n=01 − e−β(εν −µ)(p+1).1 − e−β(εν −µ)(8.8)Теперь нам осталось определить среднее число частиц всостоянии ν. Процедура совершенно аналогична, проделанной для распределения Ферми и Бозе:PppXne−β(εν −µ)n−1hnν i =nΓν γν (n) = Pn=0=p−β(εν −µ)nn=0 en=0Ã p!X∂lne−β(εν −µ)n .=∂(βµ)n=0Сумма под знаком логарифма посчитана и равна (8.8), поэтому окончательно получаемhnν i =1eβ(µ−εν )−1−p+1eβ(µ−εν )(p+1)−1.(8.9)Как видно, формула (8.9) при p = 1 переходит в распределение Ферми (7.19), а при p → ∞ – в распределение Бозе(7.18).165.