Глава_30 (1128897)
Текст из файла
Глава 30 Проблемы неопределенности
и информации в экономической теории
□ Предыстория □ Теория ожидаемой полезности
□ Экономическая теория информации — теория поиска
□ Асимметрия информации
Понятия неопределенности и информации являются как бы парными: неопределенность есть не что иное, как отсутствие информации.
К основным неявным предпосылкам маржиналистской экономической теории относилась предпосылка совершенной (полной) информации: доступ к необходимой рыночной информации предполагался свободным (бесплатным) и равным для всех экономических субъектов. Под необходимой информацией в вальрасианской модели общего равновесия понимаются знания о собственных вкусах, собственных ресурсах и о векторе равновесных цен на все товары (для маршаллианской модели частичного равновесия набор товаров меньше). Если бы доступ к информации был неполным или неравным, экономические субъекты не знали бы цен на все важные для них блага и услуги и не могли бы вести себя рационально, т.е. максимизировать свою целевую функцию, а значит, любое установившееся в результате состояние не было бы равновесным — кому-то было бы выгодно его изменить. В межвременной модели общего равновесия, впервые сформулированной Дж. Хиксом в работе «Ценность и капитал» (1939), предпосылка совершенной информации дополняется совершенным предвидением: предполагается, что экономические субъекты формируют правильные ожидания значений экономических переменных для всех будущих периодов.
Нереалистичная предпосылка совершенной информации резко ограничивала применение экономического анализа и не давала понять некоторые важные экономические явления1.
1 См., в частности, такое признание И. Фишера: «Мы должны отказаться от неуместных попыток полностью сформулировать все факторы, действительно влияющие на норму процента... теория процента, предложенная в этой книге, охватываеттолько простую, рациональную часть обусловливающих его причин. Другую, возмущающую часть причин невозможно сформулировать столь просто и рационально» (Fisher I. The Theory of Interest. N.Y., 1930. P. 321).
520
Естественно, теоретики пытались, насколько это возможно, ослабить предпосылку совершенной информации и продвинуться к более адекватному познанию экономической реальности. Этот процесс происходил как в микроэкономике, где употребляются термины «неопределенность» или «риск», так и в макроэкономике, где в том же смысле принято говорить о «проблеме ожиданий». Кроме того, в модели общего равновесия К. Эрроу и Ж. Дебре, которая как бы слишком абстрактна, чтобы отнести ее к микро- или макроэкономике, проблема неопределенности будущего решалась через введение условных благ (contingent goods), рынок которых напоминал фьючерсный.
В настоящей главе мы ограничимся микроэкономическими аспектом, т.е. проблемами неопределенности и риска (макроэкономическая проблема ожиданий будет рассмотрена в главах 33 и 34). В главе 18 уже отмечалось, что отсутствие всеобщего равного и свободного доступа к информации использовалось Ф. Найтом, Й. Шумпетером и другими для того, чтобы объяснить феномены предпринимательства и предпринимательской прибыли. Однако эти попытки совершались в рамках периферийного сегмента экономической теории и не были интегрированы в ее основное (неоклассическое) течение. К тому же Найтова концепция истинной неопределенности, не поддающейся количественному анализу, была, конечно, слишком неоперациональной. Для того чтобы включить неопределенность и риск в неоклассическую теорию, необходимо было описать поведение хозяйственных субъектов в условиях неопределенности и риска как экономически рациональное, т.е. максимизирующее целевую функцию. Это было сделано в рамках теории ожидаемой полезности, теории поиска и концепции асимметричной информации.
1. Предыстория
Истоки теории ожидаемой полезности восходят к математикам XVIII в. Габриэлю Крамеру и Даниилу Бернулли. Они излагаются в статье Д. Бернулли «Опыт новой теории измерения жребия» (1738)2, где содержится попытка объяснить так называемый Санкт-Петербургский парадокс. Во времена Бернулли математики уже использовали математическое ожидание для характеристики и оценки случайных величин. Изобретенный кузеном Даниила — Николаем Бернулли Санкт-Петербургский парадокс обнаруживает противоречие в этой
2 Напечатана в хрестоматии «Теория потребительского поведения и спроса» (под ред. В.М. Гальперина). СПб.: Экономическая школа, 1993. С. 11—27.
521
практике и заключается в следующем. Некто бросает монету до тех пор, пока не выпадет орел. Если это произойдет после первого броска, он получит 1 дукат, если только после второго — 2 дуката, после третьего — 4, после четвертого - 8 и т.д. Таким образом, формулу выигрыша можно записать как 2п - 1, а вероятность его получения как (1/2)п. Если оценить такую игру через ее математическое ожидание
то ее цена будет бесконечно большой: хотя вероятность
выигрыша с каждым разом уменьшается в 2 раза, к ожидаемой сумме, тем не менее, при этом добавляется по '/2 дуката. В то же время очевидно, что никто не захочет заплатить за право сыграть в такую лотерею бесконечно большую сумму денег. Габриэль Крамер в письме 1728 г. видел решение парадокса в том, что «разумные люди «в отличие от математиков оценивают деньги не по их количеству, а «по той пользе, которую можно из них извлечь». Для очень большой суммы польза, по мнению Крамера, перестает увеличиваться при каждом последующем броске и математическое ожидание быстро сходится к конечному числу . Д. Бернулли усовершенствовал подход Крамера, предположив, что ожидаемая полезность выигрыша является логарифмической функцией его величины. Идея Крамера - Бернулли легла в основу разработанной Дж. фон Нейманом и О. Мор-генштерном теории ожидаемой полезности.
Джон (Иоганн) фон Нейман (1903-1957) был, видимо, первым выдающимся математиком-профессионалом, которому удалось внести фундаментальный вклад в экономическую теорию. (Даниил Бернулли не разработал экономических выводов из своей идеи ожидаемой полезности.) Фон Нейман получил образование как математик и инженер-химик в университетах своего родного Будапешта и Цюриха и начал профессиональную карьеру преподавателя математики в Берлине и Гамбурге (1927—1930). Уже в этот период его работы в области теории множеств и квантовой механики снискали всемирную известность. В 1928 г. он опубликовал статью «К теории стратегических игр» (Zur Theorie der Gesellschaftsspiele), в которой основал новую область математики - теорию игр. Фон Неймана интересовали такие игры, в которых исход для каждого игрока зависит не только от случая, но и от ходов остальных партнеров. Проблема состояла в том, чтобы найти, что означает в таких условиях «лучшее решение» и как к нему прийти. Работа Неймана не имела прямых выходов на эко-
522
номические проблемы, но в сноске автор отметил, что его теория может способствовать пониманию того, как ведет себя «экономический человек» в ситуации, когда результат зависит от реакции на его действия других людей.
С 1930 г. и почти до конца жизни его деятельность была связана с Принстонским университетом (США). В 1937 г. фон Нейман в статье «Об экономической системе уравнении и обобщении теоремы Брауэра о неподвижной точке» впервые обратился непосредственно к экономической теории и внес важный вклад в теорию общего равновесия, строго доказав существование равновесия при условии, что максимизируемый в прямой задаче темп экономического роста равен минимизируемой в двойственной задаче норме процента. В 1939 г. он встретился в Принстоне с Оскаром Моргенштерном (1902—1977), бывшим профессором Венского университета и директором Австрийского института исследований экономических циклов, который был вынужден покинуть Австрию после ее присоединения к нацистской Германии. Именно влияние друга-экономиста и его интерес к теории игр привели фон Неймана к идее написать на базе своей статьи 1928 г. фундаментальный трактат об экономическом поведении. В 1944 г. вышла в свет совместная работа фон Неймана и Моргенштер-на «Теория игр и экономическое поведение», которая положила начало применению теории игр не только в экономической теории, но и в исследовании операций, политологии, биологии, информатике и военной науке. Во время второй мировой войны фон Нейман поставил свой талант на службу военной мощи своего нового отечества. После войны он возглавлял Комитет по межконтинентальным баллистическим ракетам, а в 1954 г. был назначен членом Комиссии по атомной энергии и переехал в Вашингтон. В центре внимания фон Неймана в последние годы его жизни были проблемы вычислительной техники. Кроме того, в область научных интересов фон Неймана входили вопросы астрофизики, гидродинамики и метеорологии.
2. Теория ожидаемой полезности
Теория ожидаемой полезности возникла как побочный продукт, добавление к теории игр. Во втором издании своей книги (1947) в качестве вводной главы, предшествующей описанию теории игр и ее применений к экономике, фон Нейман и Моргенштерн дают краткое описание основных положений экономической теории, которой они предлагают дать адекватный математический инструментарий на базе теории игр. Именно здесь, в этой вспомогательной по общему
523
замыслу книги главе, добавленной лишь во втором издании, авторы изложили основные тезисы своей теории ожидаемой полезности. Фон Нейман и Моргенштерн отмечают, что понятие рационального поведения (максимизации полезности или прибыли), лежащее в основе экономической теории, недостаточно определено количественно. От Робинзона - обычного героя исходных маржиналистских моделей — «участник экономики общественного обмена отличается тем, что результат его действий зависит не только от них, но и от действий других. Каждый участник пытается максимизировать некоторую функцию... не все элементы которой находятся под его контролем» 4. В ситуации подобной неопределенности или риска трудно сформулировать критерий рационального поведения. Фон Нейман и Моргенштерн перешли от выбора между определенными исходами к выбору между лотереями, включающими несколько неопределенных исходов, и доказали, что критерием рациональности здесь может служить максимизация ожидаемой полезности: рациональный экономический субъект должен выбирать вариант поведения (лотерею), который обладает максимальным значением переменной
где
возможные исходы, и — их полезности, а
их вероятности. Эта переменная и называется ожидаемой полезностью.
При выполнении некоторых простейших аксиом относительно упорядоченности предпочтений5 можно доказать, что вариант, выбранный индивидом, должен иметь наибольшее значение ожидаемой полезности. Важнейшие из аксиом заключаются в том, что предпочтения должны быть транзитивными: если А > В, а В > С, то А > С; любая сложная, многоступенчатая лотерея должна разлагаться на простые лотереи в соответствии с правилами исчисления вероятностей; если А > В и В > С, то должна существовать лотерея с исходами Аи С, равноценная гарантированному получению В. Таким образом, выстроив варианты в соответствии с убывающей ожидаемой полезностью мы получим для данного индивида (сравнение ожидаемой полезности у разных индивидов невозможно) функцию полезности Неймана— Моргенштерна.
Понятие и количественный показатель ожидаемой полезности включают два главных компонента: вероятность и полезность. Этим
4 Нейман Дж. фон, Моргенштерн О. Теория игр и экономическое поведение. М.: Наука, 1970. С. 37.
5 См.: Шумейкер П. Модель ожидаемой полезности: разновидности, подходы, результаты, пределы возможностей//Thesis. 1994. Вып. 5. С. 32— 34; Льюс Р.Д., Райфа X. Игры и решения. М.: Изд-во иностранной литературы, 1961. С. 49-54.
524
компонентам в разных версиях теории ожидаемой полезности придавались различные значения. Рассмотрим их по отдельности.
Полезность: воскрешение кардинализма
Что касается полезности, то прежде всего следует отметить, что теория Неймана-Моргенштерна вдохнула новую жизнь в концепцию кардинальной полезности (см. гл. 10) после того, как невозможность количественного измерения полезности стала общим местом в экономической теории и само понятие «полезность» было сочтено анахронизмом. Действительно, подход с позиций теории ожидаемой полезности позволяет сделать понятие полезности «операциональным» и дать ему количественную оценку. Пусть индивид предпочитает благо А благу В, а благо В благу С (А > В > C). Пусть ему предложен выбор между лотереей, в которой есть возможность выбрать благо А или благо С, и достоверным получением В. Ясно, что если вероятность выиграть А близка к 1, наш герой выберет лотерею. Если же упомянутая вероятность близка к 0, выбрано будет достоверное получение В. Существует (в соответствии с одной из аксиом Неймана—Моргенштерна) одна вероятность выпадения А, при которой игроку безразличен выбор между лотереей или гарантированным призом6. Пусть эта вероятность равна 2/3. Тогда, если мы условно обозначим полезность А за 1, а полезность С за 0, то у нас есть основания присвоить В полезность 2/3 (по формуле ожидаемой полезности она равна 2/3 х 1 + 1/3 х 0 = 2/3). Аналогично, предлагая в качестве альтернативы лотерее вместо ^другие достоверные блага, мы можем разместить их полезности на отрезке от 0 до 1. Казалось бы, проблема количественного измерения полезностей решена и кардинализм реабилитирован7.
Однако следует помнить, что наше решение действует только в ситуации риска. У нас нет, например, возможности утверждать, что в ситуации определенности разница между полезностями В и С тоже будет в 2 раза больше разницы между полезностями А и В. Дело в том, что отношение индивида к достоверным исходам А, В и С неразрывно переплетено с его отношением к риску. Например, если индивид
6 Такая ситуация возникает, например, в игре «Поле чудес», где игрок получает возможность выбрать приз и выбыть из дальнейшей рискованной игры. Но и покупая обычный лотерейный билет, вы тем самым предпочитаете возможность риска денежной сумме, равной цене билета.
Характеристики
Тип файла документ
Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.
Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.
Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.
















