GL_23_Фенолы и Хиноны (1125841), страница 4
Текст из файла (страница 4)
При сульфировании 2-нафтола 98%-ной серной кислотой при -10 оС в качестве единственного продукта образуется 2-гидроксинафталин-1-сульфокислота, однако при сульфировании 2-нафтола 92%-ной серной кислотой при 90-100 оС получается смесь 6-гидроксинафталин-2-сульфокислоты и 7-гидроксинафталин-1-сульфокислоты. В более жестких условиях при 120-130 оС в смеси преобладает 6-гидрокси-2-нафалинслуьфокислота наряду с 3-гидроксинафталин-2,7-дисульфокислотой (R-кислота) - продуктом дисульфирования 2-нафтола.
3.5.4. Нитрозирование фенолов
Нитрозирование фенолов осуществляется с помощью азотистой кислоты в воде или в уксусной кислоте для тех фенолов, которые совершенно нерастворимы в воде. Нитрозирование фенолов отличается очень высокой региоселективностью в пара-положение по отношению к гидроксильной группе. Типичное распределение орто- и пара-изомеров при нитрозировании можно проиллюстрировать на примере самого фенола.
Нитрозофенолы в растворах существуют в виде таутомерных смесей нитрозофенола и монооксима хинона, равновесие сильно смещено в сторону монооксимной формы.
В химических реакциях n-нитрозофенолы проявляют ярко выраженную двойственную реакционную способность. При окислении они превращаются в нитрофенолы, а при взаимодействии с гидроксиламином дают хинодиоксимы.
Ацетилирование п-нитрозофенола приводит к смеси ацетата фенола и оксима, причем ацетат хиноксима при нагревании изомеризуется в ацетат п-нитрозофенола.
3.5.5. Алкилирование и ацилирование фенолов по Фриделю-Крафтсу
Фенолы алкилируются в кольцо под действием самых разнообразных алкилирующих агентов: алкенов, спиртов и алкилгалогенидов в условиях кислотного катализа. Так как фенолы взаимодействуют с галогенидами алюминия и другими кислотами Льюиса с образованием солей типа ArOAlCl2, в качестве катализаторов предпочитают использовать серную, фтористоводородную, фосфорную кислоты или катиониты КУ-2, даукс и другие катионообменные смолы. Таким образом, из крезола и изобутилена в промышленности получают пространственно затрудненный фенол - 2,6-ди-трет-бутил-4-метилфенол (ионол), который широко применяется для стабилизации полимеров.
Аналогично из фенола и изопропилового спирта получается 2,4,6-триизопропилфенол.
Моноалкилирование ароматического кольца, как и другие реакции алкилирования по Фриделю-Крафтсу, отличается низкой региоселективностью и приводит к смеси соизмеримых количеств орто- и пара-изомеров. Алкилирование обратимо, и в присутствии сильных кислот Льюиса в условиях термодинамического контроля наблюдаются перегруппировки
Ацилирование фенолов в классических условиях реакции Фриделя-Крафтса комплексом ацилгалогенида и хлорида алюминия также приводит к неудовлетворительным результатам, так как ацилированию подвергается гидроксильная группа фенола. Более эффективна такая модификация этого метода, когда в качестве ацилирующего агента используется комплекс карбоновой кислоты и трехфтористого бора. Ацильная группа при этом вводится практически исключительно в пара-положение бензольного кольца. Так, например, фенол при взаимодействии с комплексом уксусной кислоты и BF3 дает пара-гидроксиацетофенон с 95%-ным выходом.
Наиболее общий метод получения гидроксикетонов ароматического ряда основан на перегруппировке Фриса. К.Фрис в 1908 году нашел, что ариловые эфиры карбоновых кислот при нагревании с AlCl3 или AlBr3 перегруппировываются в изомерные орто- или пара-гидроксикетоны. Как правило, в результате перегруппировки образуется смесь орто- и пара-изомеров без примеси мета-изомера.
Соотношение орто- и пара-изомеров зависит главным образом от температуры и растворителя. В более жестких условиях преобладает орто-гидроксикетон, а при 20-25оС - пара-гидроксикетон.
Перегруппировка Фриса часто используется для получения индивидуальных гидроксикетонов. Из ацетилсалициловой кислоты (аспирина) получается 5-ацетил-2-гидроксибензойная кислота, а из п-ацетоксибензойной кислоты - 3-ацетил-4-гидроксибензойная кислота.
Механизм перегруппировки Фриса, по-видимому, заключается в межмолекулярном ацилировании орто- или пара-положения бензольного кольца арилового эфира комплексом второй молекулы сложного эфира и AlCl3 с образованием ацильного производного гидроксикетона и фенола.
Перегруппировка завершается межмолекулярным переносом ацильной группы к фенолу.
В отличие от самих фенолов их простые эфиры очень легко подвергаются региоселективному ацилированию по Фриделю-Крафтсу в мягких условиях с образованием пара-алкоксиарилкетонов. Наилучшие результаты достигаются при ацилировании простых эфиров фенолов ацилгалогенидами в хлористом метилене при 0оС в присутствии двух молей AlCl3 или AlBr3.
Реакционноспособные фенолы (обычно двухатомные фенолы, производные резорцина) могут быть ацилированы при взаимодействии с нитрилами и сухим хлористым водородом в присутствии хлорида цинка как слабой кислоты Льюиса (реакция К. Геша, 1915 год).
Сам фенол и многие другие одноатомные фенолы в условиях реакции Геша дают не кетоны, а соли иминоэфиров ArOC(R)=N+H2 Cl-.
Конденсацию фенолов с фталевым ангидридом в присутствии серной кислоты или хлорида цинка (А.Байер, 1874 год) следует рассматривать как одну из разновидностей реакции ацилирования по Фриделю-Крафтсу. В этом случае две молекулы фенола конденсируются с одной молекулой фталевого ангидрида с образованием производных трифенилметана, называемых фталеинами.
При рН выше 9 водный раствор фенолфталеина окрашивается в малиновый цвет в результате расщепления лактонного цикла и образования дианиона.
При конденсации фталевого ангидрида с резорцином образуется желто-зеленый флуоресцеин, широко используемый в качестве флуоресцирующего средства.
3.5.6. Формилирование фенолов
Разнообразные методы введения формильной группы в ароматическое кольцо (реакции Гаттермана-Коха, Вильсмейера-Хаака и др.) уже были подробно рассмотрены в гл. 13. В этом разделе из множества методов введения формильной группы в орто- и пара-положения к гидроксильной группе фенолов будет подробно рассмотрена только реакция К.Реймера - Ф.Тимана (1876 год). Эта реакция по своему механизму резко отличается от реакций электрофильного замещения в ароматическом кольце фенолов, поэтому ее целесообразно рассматривать отдельно от других способов формилирования фенолов.
Формилирование фенолов по Реймеру-Тиману достигается при нагревании смеси фенола и большого избытка хлороформа с водным раствором гидроксида натрия при 50-70оС. Выходы альдегидов обычно невелики и редко превышают 30%, однако метод исключительно прост и доступен в практическом отношении. Главное достоинство реакции Реймера-Тимана заключается в преимущественном образовании орто-, а не пара-изомеров, как это имеет место для реакций Гаттермана и Вильсмейера-Хаака.
Механизм этой своеобразной и необычной реакции был сформулирован в классических работах Дж. Хайна по образованию и изучению реакционной способности дихлоркарбена. Дихлоркарбен :CCl2 выполняет роль электрофильного агента по отношению к феноксид-иону, образующемуся в щелочной среде. Предполагаемый механизм реакции Реймера-Тимана может быть представлен следующей последовательностью превращений:
При проведении реакции в D2O более 97% дейтерия включается в формильную группу салицилового альдегида. Это означает, что превращение
не осуществляется как внутримолекулярный 1,2-гидридный сдвиг, запрещенный правилами орбитальной симметрии. Хотя анион дихлорметилциклогексадиенона не был выделен в качестве промежуточного продукта реакции Реймера-Тимана, для самого фенола приведенный выше механизм имеет экспериментальные доказательства. Для фенолят-ионов, у которых орто- или пара-положение занято алкильной группой, помимо гидроксибензальдегида другим продуктом реакции всегда оказывается циклогексадиенон, содержащий дихлорметильную группу. Так, например, из пара-крезола получается 2-гидрокси-5-метилбензальдегид и 4-метил-4-дихлорметилциклогексадиен-2,5-он примерно в равных количествах.
2,4,6-Триметилфенол образует оба возможных изомерных дихлорметилциклогексадиенона, в которых CHCl2 - группа не подвергается гидролизу:
,
в то время как 2,6-ди-трет-бутил-4-метилфенол в этих условиях дает, как и следовало ожидать, только один из двух возможных изомеров.
Образование аномальных продуктов служит убедительным подтверждением механизма, предлагаемого для нормального направления реакции, приводящего к образованию альдегида после изомеризации и гидролиза дихлорметильной группы. Реакция протекает только в сильно щелочной среде при наличии фенольного гидроксила, тогда как простые эфиры фенолов и диалкиланилины не формилируются в этих условиях. Выходы альдегидов в реакции Реймера-Тимана невелики, так как большая часть дихлоркарбена гидролизуется в водной щелочи с образованием CO и NaCl.
Кроме того, дихлорметиловый эфир фенола, образующийся в результате атаки дихлоркарбена по кислородному атому амбидентного фенолят-иона, нацело гидролизуется до исходного фенола.
3.5.7. Конденсация фенолов с альдегидами и кетонами
Фенолы реагируют с формальдегидом в водном растворе в присутствии основания с образованием полимерного продукта, получившего название феноло-формальдегидной смолы, карболита или бакелита. В 1909 году Л.Бакелунд запатентовал способ получения этого первого синтетического высокомолекулярного соединения, которое сразу же нашло широкое применение в различных областях машиностроения, электротехники и быта, например, при изготовлении корпусов телефонов, электрических выключателей и т.д.
Взаимодействие феноксид-иона с формальдегидом напоминает альдегидную конденсацию с той лишь разницей, что роль нуклеофильного агента вместо енолят-иона выполняет амбидентный феноксид-ион, а карбонильной компонентой является формальдегид.