GL_17_Енолы (1125829), страница 5
Текст из файла (страница 5)
Ассоциация катиона с кислородным центром енолят-ионов всегда способствует реакции по атому углерода для ионной пары по сравнению со свободным енолят-ионом. Агрегация ионных пар в димеры, тримеры и более сложные агломераты еще более способствует С-алкилированию, С-ацилированию и другим процессам с участием углеродного центра енолята. Агломерация ионных пар, несомненно, является главной причиной С-алкилирования и иногда даже С-ацилирования щелочных енолятов кетонов и 1,3-дикарбонилъных соединений в петролейном эфире, ароматических углеводородах, диоксане и других неполярных растворителях.
С другой стороны, в диполярных апротонных растворителях ГМФТА, ДМСО и N-метилпирролидоне-2 реакционноспособной частицей является енолят-ион и соотношение продуктов определяется мезомерией самого амбидентного аниона и не зависит от природы противоиона. Диполярные апротонные растворители за счет специфической сольватации катиона щелочного металла способствуют диссоциации ионных пар щелочных енолятов, и тем самым способствуют реакциям с участием кислородного центра енолят-иона.
Однако влияние растворителя на двойственную реакционную способность амбидентных анионов не сводится только к специфической сольватации катиона. Другая и более интересная возможность влияния растворителя на направление реакции С- и О-алкилирования енолят-ионов 1,3-кетоэфиров и 1,3-дикетонов связана со специфической сольватацией собственно амбидентного аниона в протонных растворителях. Два реакционных центра енолят-иона резко различаются по своей электроотрицательности и распределению электронной плотности. Электронная плотность в енолят-ионе сосредоточена главным образом на более жестком и электроотрицательном атоме кислорода. Это предопределяет избирательную сольватацию енолят-иона 1,3-дикарбонильных соединений протонными растворителями за счет образования прочной водородной связи с кислородным центром амбидентного аниона. Избирательная сольватация атома кислорода вызывает непропорциональное уменьшение нуклеофильности двух центров мезомерного аниона, что приводит к резкому возрастанию доли продукта С-алкилирования. Таким образом, сольватационные эффекты подобно противоиону в ионной паре енолят-ионов приводят к экранированию кислорода, как атома с более высокой электронной плотностью и электроотрицательностью. Анион ацетоуксусного эфира алкилируется региоселективно по атому углерода в этаноле или в метаноле под действием жесткого алкилирующего агента диэтилсульфата, в то время как в ГМФТА в тех же условиях алкилирование идет по атому кислорода.
Это различие обусловлено селективной сольватацией атома кислорода аниона ацетоуксусного эфира этанолом с помощью водородной связи. Отсюда становится очевидным, почему в протонной среде енолят-ионы 1,3-кетоэфиров подвергаются С-алкилированию при взаимодействии с самыми разнообразными первичными и вторичными алкилгалогенидами, и количество эфира енола в этом случае не превышает 1-3%.
В отличие от енолят-ионов кетонов, 1,3-дикетонов и 1,3-кетоэфиров енолят-ионы сложных эфиров подвергаются региоспецифическому С-алкилированию и С-ацилированию независимо от природы уходящей группы, радикала и других факторов. Фактически с любым электрофильным агентом анионы сложных эфиров реагируют исключительно своим углеродным центром. В настоящее время разработаны превосходные общие методы моно-С-алкилирования, С-ацилирования литиевых енолятов сложных эфиров одноосновных и двухосновных карбоновых кислот.
Характерной особенностью этих реакций является полное отсутствие продуктов С,С-диалкилирования или С,С-диацилирования. Ацилирование литиевых енолятов сложных эфиров представляет собой, по-видимому, лучший современный способ синтеза 1,3-кетоэфиров, этот способ дает наиболее простое и эффективное решение проблемы перекрестной сложноэфирной конденсации Кляйзена (раздел 5.2 этой главы). Алкилирование литиевых енолятов сложных эфиров следует рассматривать как синтетический эквивалент старого классического метода синтеза карбоновых кислот алкилированием натриймалонового эфира (см. следующий раздел).
Литиевые еноляты сложных эфиров чрезвычайно легко взаимодействуют и со многими другими электрофильными реагентами. В качестве иллюстрации приведем конденсацию литиевой соли этилацетата с окисью этилена и триметилуксусным альдегидом.
Синтезы с малоновым и ацетоуксусным эфирами
Образование енолят-ионов 1,3-дикарбонильных соединений - малонового эфира, ацетоуксусного эфира и других 1,3-кетоэфиров облегчается при наличии двух электроноакцепторных заместителей - карбонильной и карбалкоксильной групп. Енолят-ионы малонового и ацетоуксусного эфира обладают более высокой стабильностью по сравнению с енолят-ионами кетонов и сложных эфиров одноосновных кислот вследствие более эффективной делокализации заряда с помощью обоих акцепторных заместителей. Это отражается на низкой величине рКа этих соединений. Щелочные соли малонового эфира и 1,3-кетоэфиров количественно получаются из исходных С-Н кислот с помощью самых разнообразных оснований: СН3СН2ONа; (СН3)3СОК; NаН, КН, ЛДА и др. в спирте или в апротонной среде и легко могут быть выделены в индивидуальном виде и храниться в течение длительного времени. Щелочные еноляты малонового эфира подвергаются региоспецифическому С-алкилированию под действием первичных и вторичных алкилгалогенидов и сульфонатов. Третичные алкилгалогениды непригодны, так как для них единственным направлением реакции становится элиминирование. Как и следует ожидать для типичных SN2-процессов, выход С-алкилпроизводных для алкилирующих агентов с первичной алкильной группой оказывается выше, чем для вторичных алкилгалогенидов. В классическом варианте синтезов с малоновым эфиром натриевый енолят малонового эфира алкилируют алкилгалогенидом в абсолютном спирте. Однако в диполярных апротонных растворителях ДМФА, ДМСО, ГМФТА, скорость реакции возрастает примерно в тысячу раз, поскольку эти растворители эффективно сольватируют щелочные катионы, но слабо сольватируют анионы. Для того, чтобы свести к минимуму долю продуктов С,С-диалкилирования, в качестве алкилирующего агента целесообразно применять алкилтозилаты и другие алкилсульфонаты вместо алкилбромидов и алкилиодидов. Производные малонового эфира гидролизуются при кипячении с концентрированной соляной кислотой при 110-120 °С с одновременным декарбоксилированием промежуточно образующихся замещенных малоновой кислоты. Ниже приведены некоторые наиболее типичные примеры получения карбоновых кислот с помощью малонового эфира. Если две вводимые алкильные группы сильно различаются по объему, рекомендуется вводить первой меньшую группу - первичную.
Современная модификация этого классического синтеза заключается в том, что гидролиз диэфиров малоновых кислот осуществляется при нагревании в водном растворе ДМСО в присутствии хлористого натрия. Применение в качестве алкилирующих агентов одного моля дигалогенидов открывает путь к получению циклических соединений в результате внутримолекулярного алкилирования во второй стадии реакции. Эти реакции имеют особое значение для получения циклобутанкарбоновой и циклопропанкарбоновой кислот.
Наилучшие результаты для получения циклопропанкарбоновой кислоты достигаются при использовании межфазного катализа с переносом реагентов из водной в органическую фазу с помощью хлорида триэтилбензиламмония или N(C4H9)4+Br- при взаимодействии одного моля малонового эфира и одного моля 1,2-дибромэтана.
Алкилирование аниона малонового эфира эфирами -галогенуксусной кислоты приводит после кислотного гидролиза к янтарной кислоте.
Соответственно, из натриймалонового эфира и эфиров -галогенкарбоновых кислот получают и другие дикарбоновые кислоты.
Другой, более доступный метод получения дикарбоновых кислот состоит в конденсации двух молей натриймалонового эфира и одного моля дигалогеналкана. Так, из бромистого метилена и натриймалонового эфира получают глутаровую кислоту, из 1,2-дибромэтана - адипиновую, из 1,3-дибромпропана - пимелиновую и т.д. Его применение ограничено лишь доступностью необходимых -дигалогеналканов.
Зависимость С- и О-алкилирования щелочных енолятов ацетоуксусного эфира от природы уходящей группы алкилирующего агента, природы растворителя и противоиона была проанализирована в предыдущем разделе этой главы. В практическом отношении наиболее важны реакции кислотного и основного гидролиза продуктов С-алкилирования ацетоуксусного эфира. При действии водно-спиртового или водного раствора HCl происходит гидролиз сложноэфирной группы с последующим декарбоксилированием 1,3-кетокислоты с образованием кетонов.
К аналогичному результату приводит гидролиз производных ацетоуксусного эфира при обработке разбавленным холодным водным раствором гидроксида натрия. Обе эти реакции известны под названием "кетонного расщепления" 1,3-кетоэфиров. Они применяются в органическом синтезе для получения кетонов со строго определенным положением карбонильной группы в условиях, исключающих изомеризацию углеродного скелета.
Синтетические возможности использования ацетоуксусного эфира для получения кетонов или гомологов ацетоуксусного эфира расширились после того, как было установлено, что он легко образует дианион при действии таких сильных оснований как бутиллитий, бис(триметилсилил)амид лития или натрия, диизопропиламид лития, гидрид натрия. Дианион ацетоуксусного эфира алкилируется при действии одного эквивалента RX исключительно по более основному и нуклеофильному -углеродному атому по отношению к сложноэфирной группе.
Другая и более интересная возможность использования этого дианиона в синтезе заключается в последовательном диалкилировании под действием различных алкилирующих агентов.
Кетонное расщепление полученного -диалкилированного производного водной HCl приводит к кетонам несимметричного строения: