Главная » Просмотр файлов » Слёзкин Н.А. Динамика вязкой несжимаемой жидкости

Слёзкин Н.А. Динамика вязкой несжимаемой жидкости (1123892), страница 41

Файл №1123892 Слёзкин Н.А. Динамика вязкой несжимаемой жидкости (Слёзкин Н.А. Динамика вязкой несжимаемой жидкости) 41 страницаСлёзкин Н.А. Динамика вязкой несжимаемой жидкости (1123892) страница 412019-05-10СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 41)

Для этого в выражении (4.14) для у, считая, что пер. вые два коэффициента имеют порядки величин Ве-1 Ва-л. сохраним слагаемые, имеющие порядок величины д в первой степени. Так как для малых вначений аргумента функция Макдональда нуле- вого порядка и ее первая производная представляются в виде (4.13) д сов Š— К (дг)ж — — = — —, дл где 7 — постоянная, равная 1,7811, то приближенное значение функ- ции у будет равно у — (7 — Вфп( — 7лг)+Дг сов 0 1п(у (Дг)~ — — ' (4.!б) Вычисляя по формулам (4.3) компоненты скоростей с точностью до ~1 величин порядка единицы и отбрасывая величины порядка Дг 1п! — 7йг), получим: о = — — — +(7сова — — Ве Х Ае Аг соз 0 1 т 2 Х !( — -1- соз 0 — соз 0 !п !т- тдг)~ + —, Г! /1 Ы В!созе (л (2 7) 2агз А,ми а Мпа (! ! Взэ!па оз — — — ' — У з!п 0 —  — 1п ( — Тдг) + — ' гя е 2 (2 7 2Ьз (4.!7) Полагаем в правых частях (4.17) г=а и приравниваем левые части нулю.

Приравнивая отдельно нулю коэффициенты при степенях сов О, Ф Такам образом, функция источника в начале координат на плоскости для уравнения (4.6) будет представлять собой функцию Макдональда нулевого порядка. т. е. Ке(дг). (4.13) 238 даижвнив пэи мАлых '!иолах Рвйнольдсл. катод оэввна (гл чг! впг Ь, получим слелующие уравнения: А, Вв — — — =-. 0, а 2/га А, — — „— и — -/) !п~~ — Тй )+ — „', =0.

2 е 'Х2 / 2аав Решая эти уравнения, будем иметь: 4ч /1э-- «(1 — 2!я(2 таа)1 1 — 21п(2 таа) 4// /)в = /1 1 — 21п ! — Гаа) (4. 19) //ав А 3 Па /1 1 — 2 гп( — тда) (,2 апи(/ 1 — 21п(- - Гй) (4.20) гле гс — число Рейнольдса, равное й =-2йа = —. 1/а (4.2 1) Формула (4.201 для сопротивления цилиндра была впервые установлена я рано ге Ламба '). Уточнен!ге формулы сопротивления круглого цилиндра, получаемой на основе использования уравнений Озеена, было дано в работах Факсепа э) и Томотика в).

В последней работе указывается, что удовлетворительное согласование ревультатов расчпта г) Е а лг Ь Н., Оп гпе ппйогпг гаоиоп о1 а вриеге Пггопйи а т!всопв Ппий Р1Н!. Мвйав (6), ХХ1, 1911. '-') р а хе и н., ехвк!е 1.омгпп пег Овеепвсьеп 1)п(егеп1!а19!е!сьппйеп е!пег гвпеп рнмыйкеи !Ог деп ран Пег Тгапв!анопвЬежейппй е!пев Еуйпнегв, Ыотв лога реп. атос, Яс1епг. Врва!а, Чог.

ехггв оггппеш ешгпш, 1927. в) тою е1! с а Й. апп ло ! т., лп ехрапв1оп /огшйгеп (ог йе агап ап а г!гспйг сунппег 1ггоч!пп !Ьгапп!г а ч1всопв Ппш а! ваап йеупо1пв пшпьгев, Тие С)ггагг.!. о/ МссЬ, апи Лрр!. Ывгпеп!., г. 19, 1951, Таким образом, при рассматриваемой степени приближения определяются только первые дэа коэффициента Аз и Ве, два же других определяются лишь в своей линейной комбинации. Подставляя найденное значение коэффициента Ае кз (4.12) в (4,11), получим следуюшую формулу для силы воздействия вязкой жидкости на неподвижный кргтлый цилиндр; злдлчл ог озтгклиии цилиплгл по уточненной формуле сопротивления круглого цилиндра с экспериментальными измерениями имеет место лишь до ~исаа Рейнольдса, равного 10.

Если подставить найденные значения ковффициентов (4.19) в (4.17), то получим следующие приближенные формулы для скоростей '!астиц жидкости вблизи поверхности самого цилиндра: — [ — ! —,— "",+2! Я, ) 1 — 2 1п( — !Ла) из!пз Г ат г) 'Оо — —— ! 1 — — + 21п — !. — ( —,«) (4.22) Жидкости и цилиндру сообщим теперь поступательное движение в направлении, обратном движению цилиндра, и сохраним в выражениях (4.9) и (4.14) лишь Глагаемые, содержащие Ао н Во, т. е. о =-Ао!и г, (4.23) Компоненты скоростей будут тогда представляться в виде о,. = —,' + —, Вогы "ш (!СО (/гг) -- соз Е Ко (Гег)), о ' оо = 2 Воем '"ч )«о(йг) 5!п Е.

1 (4.24) Для больших значений аргумента имеют место счедующие асимптотические формулы лля функций Макдональда: ~~ 2а ' К" (~') г' 2! 2Л! О 2лг Г1 l еа о, = А ~ — — ф/ -.— о '" ' "" "(1 "~. соз Е)~, ~ "Ьг ЕГ 2г ш =Аот -'-г-ечп-"'5~!5!и Е. (4.25) Впереди цилиндра, где угол Е мало отличается от т„движение частиц жидкости на далеких расстояниях будет радиальным, происхочящнм от источника в центре цилиндра с мощностью ГУ == 2п4 4.и о — ' + -""6 '")1 (4.

2!!) Следовательно, на далеких расстояниях от цнл«п!дра скорости частиц жиакостн будут определяться по следующим прнблнжвнным формулам; 240 движвнбв пви малых числах гвйнольдсл, мвтод овэвнл (гл. чп Прн этом величина радиальной скорости будет убывать обратно про- порционально расстоянию от центра цилиндра: Гяд о — — 2Ае У г У 2г' (4.28) Таким образом, порядок убывания скоростей частиц жидкости с увеличением расстояния позади цилиндра меньше, чем вперели. Тот же самый вывод можно сделать. и по отношению к порядку убывания интенсивности вихря, В самом деле, интенсивность вихря, определяемая по формуле 1 дх 2д>' нэ основании (4.23) будет представляться е виде и = Веем ™ ((е (Дг) Д Шп О.

На больших расстояниях от цилиндра будем иметь: щ — В е-ь.н-мне~ э(п О а/ г Б' (4.29) Следовательно, в области впереди цилиндра, где О к, интенсивность вихра убывает быстрее, чем по закону показательной функции и — Вез!и Ое вы У' — жО, Г а У 2г (4.30) тогда как позади цилиндра (О О) интенсивность вихря убывает лишь по закону квадратного корня из расстояния Гил — в зшОУ 2г ' (4,3!) Таким образом, при решении задачи об обтекании круглого цилиндра на основании уравнений Оэеена обнаруживается резкое раз. лнчне течений впереди и позади цилиндра..

Позади же цилиндра в области, где угол О близок к нулю, движение частиц на далеких расстояниях хотя и будет также радиальным, но с направлением скоростей в сторону движения цилиндра, и вели. чина радиальной скорости будет убывать обратно пропорционально квадратному корню иэ расстояния ог центра цилиндра: !. 51 241 ЗАДАЧА Оз ОЕТЕКАНИИ ШАРА $ б. Задача об обтекании шара Пользуясь обобщзннымн уравнениями Стокса (2.1), рассмотрим гбтекание безграничным потоком вязкой несжимаемой жидкости неюдвижного шара с радиусом а (рис.

65), Движение жидкости пред1олагаем осесимметричным. Вводя сферические координаты й и О, 1а основании рис. 65 будем иметь: х = Йсо50, «=)с51п О, дх , дг оп = охс05 0+юг 51п 0 — Рх ! ог дх1 дг Уь= — и 51П В+о со5 1= — о — )+о. л'дз) ' 1тдз ' (5. 1) годставляя выражения (2.23) в (5.1), получим компоненты вектора корости в сферяческ)чх координатах 1 ВИДЕ о =- — у со50+ — — '+ —, в . 2Л д!г д!Р' дг дт о,=-у яп 0+ — — — + —. 2Л !где !гдз ' (5.2) 'ак как единичный вектор г, нормали !вправлен по радиусу шара, а единичный ;ектор гя касательной направлен перпендиулярно'к этому радиусу, то, проектируя подинтегральное выраже1ие (2.22) на ось х, получим: — 11 — — й) ° 1 == — соз 0+ — 5!п 0 = — — + — — = — т.

дт дт 1 . дт дт . дт дх де дг д дх 1 дг з) =дх дг дх дР дг дЛ' дй' "аким образом, проекция на ось х главного вектора воздействия .явкой несжимаемой жилкостя на неподвижньш шар будет пред- тавляться в виде (5.3) Граничные условии на поверхности шара и на бесконсчности 1удут следующие: при й=-а и =-: — усо50+ — — х +- В = — О, дд дт л— 2Л д)г д~~ оь =-у яд 0+ — —.-)- — =О; 1 дх дт 2Л гг де ' У~ дб при Я =. сю и †. (l соз 0, л о„— — (гяп 0. (5.4) 242 двнжвния пти палых числах тяйнольдсл. метод озвянл !гл. хн Полагая Х= (7+у (5.5) Дифференцируя зто решение последовательно по х, получим новые частные решения (5.8) представляющие собой потенциалы скоростей диполей разных порядков, оси которых ориентированы вдоль оси симметрии потока.

умножая частные решения (5.7) и (5.8) на произвольные постоянные и складывая, получим следующее выражение аля функции еП (5.9) Будем иметь: + —, = — (3 созе 0 — 1), — = — — —, (5 соз'0 — 3 соз О). 15лз 3 (5.1 О) Поликомы Лежандра, как известно, опредеаяются равенством 1 Лч Р (-) — — — (тз — 1)" в " — 2вШДю~ (5.11) Полагая в (5,1!) последовательно л=О, п=1, п=2, и=3, мы можем удовлетворить условиям (5,4) на бесконечности, если потребуем, чтобы у и производные —. и — обращались на бесдхг дхг .г дз д!7 конечности в нуль: при )7 = со у,==- О, — Лд = О, гг = О. Ойг Лиг Обратимся теперь к вопросу о построении решений дифференциальных уравнений (2.4) н (2.10).

Характеристики

Тип файла
DJVU-файл
Размер
4,74 Mb
Тип материала
Высшее учебное заведение

Список файлов учебной работы

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6418
Авторов
на СтудИзбе
307
Средний доход
с одного платного файла
Обучение Подробнее