lect11 (1120611), страница 2
Текст из файла (страница 2)
१ã«ìâ ⥠ª®íä䍿¨¥â ®âà ¦¥¨ï áâ ®¢¨âáï à ¢ë¬ ¥¤¨¨æ¥, ª®ä䍿¨¥â ¯à®å®¦¤¥¨ï ®¯à¥¤¥«ï¥âáï è¨à®ª®¨§¢¥á⮩ ä®à¬ã«®©Z b2D = exph a (x)dx : DZ DZ ¢ §¨ª« áá¨ç¥áª®¥ ¯à¨¡«¨¦¥¨¥ ¯®§¢®«ï¥â ¤®áâ â®ç® ¯à®áâ® ®¯¨á âì ¢ ¦®¥ä¨§¨ç¥áª®¥ ¥¨¥ { à á饯«¥¨¥ ã஢¥© í¥à£¨¨ ¢ ¤¢®©®© ¯®â¥æ¨ «ì®© ﬥ. áᬮâਬ á¨á⥬ã, ¯®â¥æ¨ «ì ï í¥à£¨ï ª®â®à®© ®¯à¥¤¥«ï¥âáï ᨬ¬¥âà¨ç®©äãªæ¨¥©V (x) = V ( x)c ¤¢ã¬ï ¬¨¨¬ã¬ ¬¨ ¢ â®çª å c; c, ¢ â®çª¥ x = 0 à ᯮ« £ ¥âáï ®â®á¨â¥«ì멬 ªá¨¬ã¬ V (0) = V0 . ᫨ í¥à£¨ï â ª®¢ , çâ® ¢ë¯®«ïîâáï ¥à ¢¥á⢠V (c) < E < V0 , â® ¨¬¥îâáï ç¥âëॠâ®çª¨ ¯®¢®à®â b; a; a; b. ¡é ï § ¤ ç ® ª¢ ⮢ ¨¨ í¥à£¨¨ ¢ á¨á⥬¥ á ç¥âëàì¬ï â®çª ¬¨ ¯®¢®à®â ᫨誮¬ âà㤠, ç⮡먧« £ âìáï ¢ í⮬ ªãàᥠ«¥ªæ¨©, ®¤ ª® ᨬ¬¥âà¨ï ¯®â¥æ¨ « ã¯à®é ¥â ¤¥«®.
DZ®áª®«ìªã ¢ á«ãç ¥ ᨬ¬¥âà¨ç®£® ¯®â¥æ¨ « ãà®¢ï¬ í¥à£¨¨ ᮮ⢥âáâ¢ãîâ ç¥â륨«¨ ¥ç¥âë¥ ¢®«®¢ë¥ äãªæ¨¨, ¬®¦® à áᬠâਢ âì § ¤ çã «¨èì ¯à¨ ¯®«®¦¨â¥«ìëå x, ¢ë¤¥«ïï ç¥â®¥ ¨«¨ ¥ç¥â®¥ à¥è¥¨¥ ãá«®¢¨ï¬¨ ¢ â®çª¥ x = 0: (0) = 0¨«¨ (0) = 0. í⮬ á«ãç ¥ ¤®áâ â®ç® à áᬮâà¥âì «¨èì ¤¢¥ â®çª¨ ¯®¢®à®â . ᫨ ¢®«®¢ ï äãªæ¨ï ã¡ë¢ ¥â ¯à¨ x ! 1, â® ¢ ¯à®¬¥¦ã⪥ a < x < b ® ¤®«¦ ¨¬¥âì ¢¨¤ Z bC(x) = pp(x) cos h1 p(x)dx 4 :xâ®¡ë ®¯à¥¤¥«¨âì íâã äãªæ¨î ¢ ¨â¥à¢ «¥ 0 < x < a, ¯à¥¤áâ ¢¨¬ ¥¥ ä®à¬¥ Z xC(x) = pp(x) cos h1 p(x)dx 4 + ;a80£¤¥Z b1 =p(x)dx + :h a2DZਠ0 < x < a ¢®«®¢ ï äãªæ¨ï ®¯à¥¤¥«ï¥âáï ¢ëà ¦¥¨¥¬Z a Z a1CsinCcos(x) = 2p(x) exp h (x)dx + p(x) exp h1 (x)dx :xx 票ï äãªæ¨¨ ¨ ¥¥ ¯à®¨§¢®¤®© ¢ â®çª¥ x = 0 ®¯à¥¤¥«ïîâáï ¢ëà ¦¥¨ï¬¨Z aZCcos1Csin 1 a(0) = 2p(0) exp h (x)dx + p(0) exp h (x)dx ;00ppZZCsin (0) 1 aCcos (0) 1 aexp(x)dxexp(x)dx :(0) =2hh 0hh 0 ãà ¢¥¨ï, ®¯à¥¤¥«ïî騥 ã஢¨ í¥à£¨¨,1 cosexp 1 Z a(x)dx + sinexp 1 Z a(x)dx = 02h 0h 0¨ Z a1 cosexp 1 Z a(x)dx1 (x)dx = 0;sinexp2h 0h 0á« £ ¥¬®¥ Z a1sinexph 0 (x)dxᮤ¥à¦¨â ¡®«ì让 íªá¯®¥æ¨ «ìë© ¬®¦¨â¥«ì.
⮡ë ᪮¬¯¥á¨à®¢ âì ¥£®, äãªæ¨î í¥à£¨¨ (E ) á«¥¤ã¥â ᤥ« âì ¬ «®© ¢¥«¨ç¨®©. â® ®¯à¥¤¥«ï¥â ¢ë¡®à § 票©í¥à£¨¨. ᫨E = E0 + ÆE;â®1 Z b p2m(E V (x)) 1 Z b p0 (x)dx + mÆE Z b 1 dx;h ah aha p0 (x)£¤¥pp0 (x) =2m(E0 V (x)):â®à®¥ á« £ ¥¬®¥ ¬®¦® ¯à¥¤áâ ¢¨âì á«¥¤ãî騬 ®¡à §®¬:ZZÆE b dxÆETmÆE b 1dx; ==hh a v0 (x)2h ;a p0 (x)£¤¥ T { ¯¥à¨®¤ ª®«¥¡ ¨ï ª« áá¨ç¥áª®© ç áâ¨æë á í¥à£¨¥© E0 . ᫨ í¥à£¨ï E0â ª®¢ , çâ®1 Z b p0 (x)dx = (n + 1 );h a290â®cos ( 1)n;sin ( 1)n+1 ÆEh! ;!=2 :T ᫨ V1 (x) { ¯®â¥æ¨ «, ᮢ¯ ¤ î騩 á V (x) ¯à¨ ¯®«®¦¨â¥«ìëå § 票ïå x, ¨¬®®â®® ¢®§à áâ î騩 ¯à¨ ã¡ë¢ ¨¨ x, â® ¯à¨ï⢥ ¬¨ § 票ï E0 { íâ® ã஢¨í¥à£¨¨ ç áâ¨æë ¢ ¯®«¥ V1 .
DZਠ¨§¬¥¥¨¨ ¯®â¥æ¨ « ®â V1 ¤® V ã஢¨ í¥à£¨¨à á饯«ïîâáï, ¯à¨ç¥¬ ¨§è¥¬ã ã஢î í¥à£¨¨ ᮮ⢥áâ¢ã¥â ç¥â ï, ¢ëá襬ã {¥ç¥â ï ¢®«®¢ë¥ äãªæ¨¨:(E0 + 2E ; (x) = ( x)E =E0 2E ; (x) = ( x)£¤¥Zh ! 1 aE = exp h 0(x)dx :a10.